
Freestanding C, and building C compiler in

assembly then C

Adam Boult (www.bou.lt)

March 23, 2024

Contents

I Unstructured integer programming with C 2

1 Integer literals and variable assignment in C, and naming con-
ventions 3

2 Integer addition and subtraction in C 6

3 Integer multiplication and division in C 8

4 Evaluating mathematical expressions using abstract syntax trees,
and -fix notation 9

5 Types of integers in C, characters and casting 10

6 Goto and switch in C 13

7 const, register and volatile in C 15

8 The C preprocessor 16

9 enum and const 18

10 Bitwise operations in C 20

II Other data types in C 23

11 Pointers and arrays in C 24

12 Strings in C 26

13 Floats in C 28

14 Structs in C 29

15 Booleans in C 31

1

CONTENTS 2

III Structured and procedural programming with C 32

16 Global and local scope in C 33

17 Relations and logical operators 34

18 Control flow and logic in C and the structured program theo-
rem 36

19 Functions and stack memory in C 39

20 Side effects and sequence points in C 42

21 Typedef in C 43

22 Optimising compiled C code, including tail call optimisation
and the restrict keyword 44

IV Freestanding headers for C 45

23 Macros and the C preprocessor 46

24 stddef.h - including size t and the sizeof operator 47

25 Macros for boolean variables using stdbool.h 48

26 Allowing indefinite function arguments using stdarg.h 49

27 Adding fixed width integers with stdint.h 51

28 Documenting non-returning functions using stdnoreturn.h 52

29 Getting and setting type width using stdalign.h 53

30 Getting upper and lower integer limits using limits.h 54

31 Macros for operations (eg ”and”, ”bitand”) using iso646.h 55

32 float.h 58

V Compiling C code 59

33 Static single-assignment form 60

Part I

Unstructured integer
programming with C

3

Chapter 1

Integer literals and variable
assignment in C, and
naming conventions

1.1 Variable initialisation

1.1.1 Variable initialisation

when doing eg ”int myvar;” we are:

+ declaraing: saying the variable exists for the code + defining: allocates mem-
ory for it

distinction is important, can split up in eg ”extern”

1.2 Variables

1.2.1 Assigning literals to variables

Variables rather than addresses within a scope memory location is equivalent
to variable: in high level and variables

We can assign a value to a variable by eg:

int a = 10;

This does two different things. First it declares the variable a. This assigns part
of the memory for the variable. Secondly it defines the value of the memory
represented by the variable to 10.

These can be split out as follows.

4

CHAPTER 1. INTEGER LITERALS ANDVARIABLE ASSIGNMENT IN C, AND NAMING CONVENTIONS5

int a;

a = 10;

If the variable is declared before it is defined it is an uninitialised variable, and
its value is undefined.

In addition to decimal we can also set values using other literals.

int a = 10;

int b = 010;

int c = 0x10;

Here b is octal because of the first 0 in the literal. In decimal it is 8. c is
hexidecimal because of the first 0x in the literal. In decimal it is 16.

1.2.2 Assigning variables from other variables

We can also assign variables from other variables.

int a = 10;

int b = a;

The following is valid syntax but unlikely to be what was intended.

int a = 10;

int b;

int c = b = a;

1.2.3 Note on lvalues

lvalue in c identifiable location in memory. not a constant. not a function. not
a literal, not a calculation eg (a+b)

left has to be lvalue. right can be lvalue or not int a = 1; // OK. a is an lvalue.
doesn’t matter what right is. int b = a; // OK. b is an lvalue. right is also an
lvalue, which is ok. (a+b) = 5; // not OK 5 = a; // Not OK left hand side has
to be an lvalue. has to be an address we can set result of right hand side to.

1.3 Naming conventions

1.3.1 Camel case

CamelCase lowerCamelCase UpperCamelCase

1.3.2 Kebab case

Kebab-Case Upper-Kebab-Case lower-kebab-case

CHAPTER 1. INTEGER LITERALS ANDVARIABLE ASSIGNMENT IN C, AND NAMING CONVENTIONS6

1.3.3 Snake case

Snake Case lower snake case Upper Snake Case

1.4 Introduction

1.4.1 Reserved

C where C is any capital as variables for C. reserved.

Chapter 2

Integer addition and
subtraction in C

2.1 Introduction

2.1.1 Addition

int a = 1+2;

int a = 1;

int b = a+2;

int a = 1;

a+=1

2.1.2 Integer overflow

2.1.3 Subtraction

int a = 2 - 1;

int a = 2;

int b = a-1;

int c = -a;

-=

2.2 Increments and decrements

2.2.1 Increment

int a = 1;

7

CHAPTER 2. INTEGER ADDITION AND SUBTRACTION IN C 8

a++;

Ambiguity:

a=a++;

2.2.2 Decrement

int a = 1;

a--;

Ambiguity:

a=a--;

Chapter 3

Integer multiplication and
division in C

3.1 Introduction

3.1.1 Multiplication

*

*=

3.1.2 Division and modulo division

/

%

/=

%=

9

Chapter 4

Evaluating mathematical
expressions using abstract
syntax trees, and -fix
notation

4.1 Introduction

4.1.1 Introduction

10

Chapter 5

Types of integers in C,
characters and casting

5.1 Introduction

5.1.1 Integer types in C

5.1.2 Standard (signed) integers

Following are equivalent.

Signed means includes +ve and -ve numbers.

These are at least 16-bit (ie could be 32, 64, 16, or something else - up to the
implementaion)

In 16 bit this goes between -32,767 and 32,767.

int a = 1;

signed int a = 1;

signed a = 1;

5.1.3 Unsigned integers

If these are 16-bit these are between 0 and 65, 535.

unsigned int a = 1;

unsigned a = 1;

5.1.4 Short integers

These are at least 16 bit, and equal or lesser than standard integers in their
bits.

11

CHAPTER 5. TYPES OF INTEGERS IN C, CHARACTERS AND CASTING12

short int a = 1;

signed short int a = 1;

signed short a = 1;

short a = 1;

Unsigned versions.

unsigned short int a = 1;

unsigned short a = 1;

5.1.5 32-bit

Guaranteed to be at least as big as int, and at least 32 bit.

long int a = 1;

signed long int a = 1;

signed long a = 1;

long a = 1;

Unsigned versions:

unsigned long int a = 1;

unsigned long a = 1;

5.1.6 64-bit

Guaranteed to be at least as big as long, and at least 64 bit.

long long int a = 1;

signed long long int a = 1;

signed long long a = 1;

long long a = 1;

Unsigned versions:

unsigned long long int a = 1;

unsigned long long a = 1;

5.1.7 char

At least 8 bit.

char can be unsigned or signed.

char a = 1;

If signed is between -127 and 128 (if 8 bit)

signed char a = 1;

If unsigned is between 0 and 255 (if 8 bit)

unsigned char a = 1;

CHAPTER 5. TYPES OF INTEGERS IN C, CHARACTERS AND CASTING13

5.1.8 Using American Standard Code for Information In-
terchange (ASCII)

char a = "a";

5.1.9 Casting

unsigned short int a = 1;

unsigned long long b = (long long) a;

Chapter 6

Goto and switch in C

6.1 Go To

6.1.1 Go to

label_name:

.

.

.

goto label_name;

6.2 Switch-case

6.2.1 Switch-Case

int x;

switch(a)

{

case 1:

x = 1;

break;

case 2:

x = 0;

break;

case 3:

x = 2;

break;

default:

x = 5;

14

CHAPTER 6. GOTO AND SWITCH IN C 15

}

If break isn’t used, all following cases will be run.

Chapter 7

const, register and volatile
in C

7.1 Introduction

7.1.1 Introduction

const tells compiler value will not change.

volatile tells compiler that value is prone to change.

register hints that the variable should be stored in a register.

Generally only const is useful, as the others can be automated by the compiler.
Using const allows errors to be detected if the const is not treated as a const in
code.

16

Chapter 8

The C preprocessor

8.1 Introduction

8.1.1 define

use of #define

#define PI 3.149

x=PI*4;

can define functions using macros can define

#define TIMES_THREE(x) (x * 3)

y=TIMES_THREE(5);

can turn on DEBUG eg

#define DEBUG

or do with compiler eg

GCC -DDEBUG (D then macro name)

why use const over define? handled by compiler not preprocessor. means you
can do type checking

8.1.2 include

8.1.3 undef

8.1.4 ifdef

ifdef thing: following prints ”a” only if DEBUG is defined

#ifdef DEBUG

17

CHAPTER 8. THE C PREPROCESSOR 18

printf("a");

#endif

Chapter 9

enum and const

9.1 Introduction

9.1.1 enum

enum flag {const1, const2, ..., constN};

const1 = 0 by default

can do const1+1 etc

Changing default values of enum constants

enum suit {

club = 0,

diamonds = 10,

hearts = 20,

spades = 3,

};

can initialse from enum

enum week day;

or when defining

enum week{Mon, Tue, Wed}day;

day = Wed;

9.1.2 CONST and modifiable lvalues

use of ”const” here? page? motivation? is it actually stored in memory or just
compiled?

19

CHAPTER 9. ENUM AND CONST 20

basically throws an error if you try to modify. still actually stored in memory.
eg a function can take a const as an input. variable at compile time. const and
run time.

distinction between unmodifiable lvalues and modifiable lvalues

const int a = 1;

a = 2; // bad, even though a is an lvalue.

Chapter 10

Bitwise operations in C

10.1 Introduction

10.1.1 Bitwise AND

int x = 12;

int y = 10;

z = x & y;

int x = 12;

int y = 10;

// Following two lines are equivalent.

x &= y;

x = x & y;

10.1.2 Bitwise OR

int x = 12;

int y = 10;

z = x | y;

21

CHAPTER 10. BITWISE OPERATIONS IN C 22

int x = 12;

int y = 10;

// Following two lines are equivalent.

x |= y;

x = x | y;

10.1.3 Bitwise NOT

int x = 12;

int y = ~x;

10.1.4 Bitwise XOR

int x = 12;

int y = 10;

z = x ^ y;

int x = 12;

int y = 10;

// Following two lines are equivalent.

x ^= y;

x = x ^ y;

10.1.5 Left bitshifts

Left shift shifts all bits to the left. In binary, left shift by 1 place is same as
multiplying by 2, assuming no overflows.

We can left shift by any number of places.

The new bit on the furthest right is set to 0.

int x = 12;

int y = 2;

int z = x << y;

CHAPTER 10. BITWISE OPERATIONS IN C 23

int x = 12;

int y = 2;

// Following two lines are equivalent.

x <<= y;

x = x << y;

10.1.6 Right bitshifts

Right shift shifts all bits to the right. In binary, right shift by 1 place is same
as diving by 2 and dropping the remainder.

We can right shift by any number of places.

The new bit on the furthest left is set to 0.

int x = 12;

int y = 2;

int z = x >> y;

int x = 12;

int y = 2;

// Following two lines are equivalent.

x >>= y;

x = x >> y;

Part II

Other data types in C

24

Chapter 11

Pointers and arrays in C

11.1 Pointers

11.1.1 Pointers

Getting address of variable with &

variable pointers with & and * in c

int a = 1;

int * b = &a;

∗p assumes p is pointer and gets what it points at. &p assumes p is value and
gets address of p.

NULL is literal pointer to no valid data. same as 0.

pointer of zero doesn’t work, reserved

11.1.2 Dangling pointers

int * p = NULL;

{

int a = 1;

p = &a;

}

p is dangling after because scope ends.

25

CHAPTER 11. POINTERS AND ARRAYS IN C 26

11.1.3 Void pointers

11.2 Arrays

11.2.1 Defining arrays

int vals[] = {1, 2, 3, 4, 5};

Can also define empty array:

11.2.2 Accessing values in arrays

The following are the same. Difference is just syntactic sugar.

a[i]

*(a+i)

11.2.3 Array shifting

Relevant for insertion in place.

11.2.4 sizeof()

This function gets the length of an array. It is determined at compile time.

11.2.5 Buffer overflows

11.2.6 Multi-dimensional arrays

The following are the same. The difference is just syntactic sugar.

a[i][j]

??

(Doesn’t this need to know dimensions of all but last one? How does this work
if size not known in eg a function?)

11.2.7 Sort

Regular arrays. If want to insert or remove can create new array with new size.
Traversal of array is O(1)

array slices etc operations

c increase size of array. automatically creates array twice as big?? how does
this work with stack??

size of array unknown at runtime unless provided

arrays if you have array of length 4 and you look at 5 what happens? Does
compiler prevent? What about if just have pointer to array?

Chapter 12

Strings in C

12.1 Introduction

12.1.1 Introduction

char c[] = "c string";

can declare. eg

char s[6];

s = "hello";

Can over declare, givng spare space.

char c[50] = "hello";

12.1.2 Null character

Compiler adds null character automatically.
0 is null character.

char c[] = {"h", "e", "l", "l", "o", "\0"};

12.1.3 Strings and pointers

Strings are arrays of characters, and so we can use pointers to access.

∗c returns ”h”. ∗(c + 1) returns ”e”.

27

CHAPTER 12. STRINGS IN C 28

12.2 Strings

12.2.1 Encodings

Can represent same information in multiple ways?

12.2.2 American Standard Code for Information Inter-
change (ASCII)

12.2.3 UTF (Unicode)

12.2.4 Sort

strings as data type. similar to array? but diff functions. eg find ”cat” in
”concatenate”

can subinstr. upper. lower. proper. strpos

can regex. section on regex in data types?

character: number maps to character

string literals

array of chars

buffer overflows on strings (already discussed them in the context of arrays)

can use sizeof. size determined at compile time

null terminated string

string literals: escaping characters

Chapter 13

Floats in C

29

Chapter 14

Structs in C

14.1 Introduction

14.1.1 Introduction

struct myStructure {

int myNum;

char myLetter;

};

struct myStructure s1;

s1.myNum = 13;

s1.myLetter = ’B’;

14.1.2 Accessing via pointers

The following two ways of accessing via a pointer are the same.

struct myStructure {

int myNum;

char myLetter;

};

struct myStructure s1;

s1.myNum = 13;

s1.myLetter = ’B’;

30

CHAPTER 14. STRUCTS IN C 31

struct myStructure * p;

p = &s1;

(*p).myNum;

(*p).myLetter;

p->myNum;

p->myLetter;

Chapter 15

Booleans in C

15.1 Introduction

15.1.1 Introduction

Bool is a variable type in base C.

_Bool x = 1;

32

Part III

Structured and procedural
programming with C

33

Chapter 16

Global and local scope in C

16.1 Introduction

16.1.1 Blocks

blocks

16.1.2 Global

Global variables are allocated at compile time.

Initialised variables are set to their given value.

Uninitialised variables have space set aside for them.

34

Chapter 17

Relations and logical
operators

17.1 Relations

17.1.1 Equals

int x = 1;

int y = 1;

int z = x == y;

17.1.2 Not equals

int x = 1;

int y = 1;

int z = x != y;

17.1.3 Greater than and less than

int x = 1;

int y = 1;

int z = x > y;

int x = 1;

int y = 1;

int z = x < y;

35

CHAPTER 17. RELATIONS AND LOGICAL OPERATORS 36

17.1.4 Greater or equal than and less or equal than

int x = 1;

int y = 1;

int z = x >= y;

int x = 1;

int y = 1;

int z = x <= y;

17.2 Logic

17.2.1 Logical AND, and short-circuiting for AND

Returns 1 if both positive. 0 otherwise.

If first is not truthy, the second is not evaluated.

int x = 1;

int y = 0;

int z = x && y;

17.2.2 Logical OR, and short-circuiting for OR

Returns 1 if either positive. 0 otherwise.

If first is truthy, the second is not evaluated.

int x = 1;

int y = 0;

int z = x || y;

17.2.3 Logical NOT

int x = 1;

int y = 0;

int z = !(x && y);

Chapter 18

Control flow and logic in C
and the structured program
theorem

18.1 If-Then-Else

18.1.1 If-then-else

if () x else y

can group multiple with block

if () {} else {}

block curly counts as single command

can pass varibales to logical evaluation

int x = 1;

if (x)

evaluating ints and longs. seems to be if ¿= 1 then true otherwise false? does
something on char too?

18.1.2 Conditional operator

If we want to set the value of something based on a conditional, eg:

if (a > b) {

result = x;

}

else {

37

CHAPTER 18. CONTROL FLOWAND LOGIC IN C AND THE STRUCTURED PROGRAMTHEOREM38

result = y;

}

We can instead do the following

result = a > b ? x : y;

If we have something of the form:

if (a) {

result = a;

}

else {

result = y;

}

We can write the following in some implementations of C.

result = a ? : y;

Known as the Elvis operator (because of ”?:”).

18.2 While loops

18.2.1 While

while (n<10) {;

n++;

}

18.2.2 Do-While

do while in addition to while. do while means the loop is run at least once

do {

// the body of the loop

}

while (testExpression);

18.3 For loops

18.3.1 For loops

int a = 1;

for (int n=10; n>0; n--) {

a = a + 5;

}

CHAPTER 18. CONTROL FLOWAND LOGIC IN C AND THE STRUCTURED PROGRAMTHEOREM39

18.3.2 Continue in for loops

int a = 1;

for (int n=10; n>0; n--) {

if (n==5) continue;

a = a + 2;

}

18.3.3 Break in for loops

int a = 1;

for (int n=10; n>0; n--) {

if (n==5) break;

a = a + 1;

}

18.3.4 Using multiple variables

for loops like this. can do multiple variables like below.

for (int n=0, i=100 ; n!=i ; n++, i--)

{

// whatever here...

}

18.4 Structured program theorem

18.4.1 Introduction

Can do without gotos, and use structured loops instead.

Chapter 19

Functions and stack
memory in C

19.1 Introduction

19.1.1 Basics

void foo() {

int a = 0;

a++;

printf("%d%d\n", a);

}

calling this print 1, 1, 1, 1

c is staticly typed. functions can only take correct type

scoping (lexical scoping?) static binding: global variable. variable points to
same address throughout dynamic binding: ones on stack (or heap). variable
does not point to same address throughout allocated within functions. auto-
matically freed when function finished.

variables inside functions are local, can’t be accessed by other functions. even
if called from within another function

c doesn’t accept default parameters in function

stack memory: allocated at run time. data released when function finished

19.1.2 The main function

Can move main code into its own function, reducing global scope and risk of
mistakes.

40

CHAPTER 19. FUNCTIONS AND STACK MEMORY IN C 41

int main (void) {

return 0;

}

19.1.3 Splitting out function declaration and definition

splitting out declaration and definition of functions allow definitions to be placed
more conveniently. eg main at top rather than bottom declarations of functions
(or variables) must be made before referenced in functions

as with variables, defining functions takes two forms int increment (int a); int
increment (int a) a = a + 1; return a (is this right? can we define functions
after declaring without repeating whole of declaration?

declaration is also known as the function prototype

19.1.4 Static variables in functions

Static variables in functions are global variables, but only accessed via scope of
function.

void foo() {

static int a = 0;

int b = 0;

a++;

b++;

printf("%d%d\n", a, b);

}

calling this print 11, 21, 31, 41 etc

19.1.5 Pointers to functions

function pointers in c

passing functions as arguments in c. possible!

19.1.6 SORT

passing array length in functions. can we use sizeof? probably not because
sizeof figured out at compile time?

when arrays passed as arguments, it;s the pointer to the first element.

c. stack pivot exploit

stack buffer overflow + point outside area reserved for stack, in particular if
overwrite return address

call stack

CHAPTER 19. FUNCTIONS AND STACK MEMORY IN C 42

stack pointer

stack memory in c literally a stack everytime allocatte an integer, move the
stack allocator ahead however many needed, then return the memory address

can’t define function inside function.

Chapter 20

Side effects and sequence
points in C

20.1 Introduction

20.1.1 Introduction

static in function means can have side effects.

can use const to prevent side effects

int myfunction (const int * x)

means can’t modify x in function.

concept of ”pass by reference” in functions, side effects

can also have side effects if global variables exist

c allows you to put function calls inside if statements. means both won’t neces-
sarily be run

function side effects in c. + happen with pointers

43

Chapter 21

Typedef in C

21.1 Introduction

21.1.1 Introduction

typedef int my_score;

void my_function(my_score score) {}

allows you to write functions that accept int etc, but only specificly defined, not
ints more generally. just allows for safer code writing, optional

If we are doing a typedef for a struct it will look like this:

typedef struct my_score_struct {

int a;

char b;

} my_score;

void my_function(my_score score) {}

We can also split out the struct definition and the alias.

struct my_score_struct{

int a;

char b;

};

typedef my_score_struct my_score;

void my_function(my_score score) {}

44

Chapter 22

Optimising compiled C
code, including tail call
optimisation and the
restrict keyword

22.1 Introduction

22.1.1 Tail call optimisation

22.1.2 restrict

restrict keyword for pointers.

Indicates to compiler that no other pointer points to this variable.

Leads to more efficient code.

45

Part IV

Freestanding headers for C

46

Chapter 23

Macros and the C
preprocessor

23.1 Macros

23.1.1 Macros

Not separate, code is replaced before it is run

#define PI 3.14

These are then expanded before compiling.

23.1.2 Parametised macros

We can also replace using functions.

For example we could do:

print(3 + 1)

print(2 + 1)

or

#define plusOne(x) (x+1)

print(plusOne(x))

print(plusOne(x))

47

Chapter 24

stddef.h - including size t
and the sizeof operator

24.1 Introduction

24.1.1 Introduction

imported via other libaries, so don’t need to directly call

24.1.2 size t and the sizeof operator

int x = 1;

size_t x = sizeof(x);

size_t y = sizeof(int);

sizeof operator is calculated at compile time. sizeof is in base C, but the data
type size t is not, and requires the stddef.h header.

24.1.3 NULL

48

Chapter 25

Macros for boolean
variables using stdbool.h

25.1 Introduction

25.1.1 Introduction

Introduces a macro ”bool” for ” Bool”.

Also ”true” for 1 and ”false” for 0.

_Bool x = 1;

bool y = true;

49

Chapter 26

Allowing indefinite function
arguments using stdarg.h

26.1 Introduction

26.1.1 Introduction

The following declares the new type va list at the start.

Then between va start and va end we can access arguments using va args re-
peatedly, while giving it the type to take out.

void my_function(int count, ...) {

va_list args;

int i;

va_start(args, count);

for (i = 0; i < count; i++) {

int num = va_arg(args, int);

}

va_end(args);

}

When we traverse va arg we can’t go back. Another approach is to use va copy
to take a copy of the args before going through them.

void my_function(int count, ...) {

va_list args;

50

CHAPTER 26. ALLOWING INDEFINITE FUNCTION ARGUMENTS USING STDARG.H51

int i;

va_start(args, count);

va_copy(args_copy, args);

for (i = 0; i < count; i++) {

int num = va_arg(args, int);

}

for (i = 0; i < count; i++) {

int num = va_arg(args_copy, int);

}

va_end(args);

va_end(args_copy);

}

Chapter 27

Adding fixed width integers
with stdint.h

27.1 Introduction

27.1.1 Introduction

This adds new types of fixed width integers which won’t vary by computer.

To recap, existing variables, such as int have a lower bound but not an upper
bound, as such the behaviour can vary machine to machine.

The types are:

+ int8 t: Signed 8 bit + uint8 t: Unsigned 8 bit + Equivalents for 16, 32 and
64 bit (eg uint64).

The header also provides macros to indicate the min and max of these types,
including eg INT8 MIN, UINT64 MAX.

52

Chapter 28

Documenting non-returning
functions using
stdnoreturn.h

28.1 Introduction

28.1.1 Introduction

Adds ability to prefix functions with noreturn.

This hints to the compiler and reader that the function will not return. Eg if
there is an infinite loop.

noreturn void loop_forever() {

int x = 1;

while(1) {

x = 2;

}

}

53

Chapter 29

Getting and setting type
width using stdalign.h

29.1 Introduction

29.1.1 Introduction

Get number of bytes:

alignof(int);

alignof(x);

Set number of bytes:

alignas(double) int x;

Also adds macros to check if this is available:

__alignas_is_defined

__alignof_is_defined

54

Chapter 30

Getting upper and lower
integer limits using limits.h

30.1 Introduction

30.1.1 Introduction

Provides macros for bits and stuff

CHAR BIT: Bits in byte MB LEN MAX: Max bytes in multi-byte character

Also does upper and lower limits of variable types SCHAR MIN: Signed char-
acter min CHAR MAX: Unsigned character max.

These are available for CHAR, UCHAR, SHRT, USHRT, INT, UINT, LONG,
ULONG.

55

Chapter 31

Macros for operations (eg
”and”, ”bitand”) using
iso646.h

31.1 Introduction

31.1.1 Macros for logic

Adds ”and”, ”or”, ”not” and ”not eq”.

int x = 1;

int y = 0;

// These are the same.

int z = x && y;

int z = x and y;

int x = 1;

// These are the same.

int z = ! x;

int z = not x;

int x = 1;

int y = 0;

56

CHAPTER 31. MACROS FOROPERATIONS (EG ”AND”, ”BITAND”) USING ISO646.H57

// These are the same.

int z = x || y;

int z = x or y;

int x = 1;

int y = 0;

// These are the same.

int z = x != y;

int z = x not_eq y;

31.1.2 Macros for bitwise operations

int x = 12;

int y = 10;

// These are the same.

int z = x & y;

int z = x bitand y;

// These are the same.

int z = x | y;

int z = x bitor y;

// These are the same.

int z = x ^ y;

int z = x xor y;

Also eq versions

int x = 12;

int y = 10;

// These are the same.

int y &= x;

int y and_eq x;

// These are the same.

int y |= x;

int y or_eq x;

CHAPTER 31. MACROS FOROPERATIONS (EG ”AND”, ”BITAND”) USING ISO646.H58

// These are the same.

int y ^= x;

int y xor_eq x;

And also bitwise not

int x = 10;

// These are the same.

int y = ~x;

int y = compl x;

Chapter 32

float.h

32.1 Introduction

32.1.1 Introduction

59

Part V

Compiling C code

60

Chapter 33

Static single-assignment
form

33.1 Introduction

33.1.1 Introduction

61

