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Chapter 1

Representing natural
numbers using states

1.1 States

1.1.1 The bit

A single bit can store a binary piece of information. We can use it to distinguish
between two states.

These two states could be represented by True T and False F , but by convention
we use 1 and 0.

We can combine bits to store more complex pieces of information. If we have n
bits, we can distinguish between 2n states.

Eight bits together constitute a byte. This can represent one of 28 = 256 states.

1.1.2 Decimal as basis

We could also represent numbers using a decimal basis, so each element could
take 10 states, and n elements could represent 10n states.

The choice of basis is an abstraction.

1.1.3 Representing numbers

By convention (and in particular in C) we can represent numbers using their
basis like: 0b0100 for a 4-bit number, representing 4 in binary. The 0b at the
start indicates that what will follow is a number written in binary.

Could also write 0d5322 for 5322, in decimal.
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CHAPTER 1. REPRESENTING NATURAL NUMBERS USING STATES 8

Could write 0x53A4 for 21412 in hexidecimal.

1.1.4 Endianness

Big-endian: Largest byte in first memory space. Little-endian: Largest byte in
last memory space.

1.2 Natural numbers using binary

1.2.1 Representing natural numbers

We will use a byte to describe natural numbers. This gives us a range of 28 =
256. As we include 0 the largest number here is 255.

1.2.2 Zero

We describe zero using all 0s.

0 = 00000000

1.2.3 Hexidecimal

4 bits

24 is 16

use 0 to 15, 0 to f .

can represent byte with 2 hex. 16x16 = 28 = 256 0xFA



Chapter 2

Bitwise operations and the
half- and full-adder

2.1 Unary bitwise operations

2.1.1 NOT

We can perform basic operations on inputs.

A simple operation is the unary NOT operator, which returns the reverse of the
values of all bits.

We also have binary operators, which take two bits and return another bit. Of
note are, AND, OR and XOR.

These operations are a model of Boolean algebra. So there are 16 possible binary
functions and 4 possible unary operators.

As in logic, we can combine elementary logical gates to create other logic gates.

These operations can also be performed on a series of bits, however each indi-
vidual bit is independent of other bits for these operations.

masks in bitwise operations. take only desired part by doing and operation with
mask

2.1.2 Setting values

setting values. or operator with target values if want to set to 1. what if want
to set 0? invert map and use and. or just use xor

9
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2.1.3 Bitshifts

We can have other operations where bits do interact. An important operator is
the bit shift. This takes a series of bits and shifts them to the right or left by
one place. This pushes one bit off the end.

The new bit can take a 0 or 1.

Logic gates are not needed for bit shifts. Instead wiring of inputs to outputs
achieves the same effect.

shift left is x2 shift right is /2

2.2 Binary bitwise operations

2.2.1 AND, OR and XOR

2.2.2 Combining operations

Simple operators, such as bitwise operators and bit shifts, can be combined to
create more complex operators. These could have a large number of inputs,
outputs and logical gates.

2.3 Arithmetic Logic Units (ALUs)

2.3.1 Half adder

We first introduce the half adder.

Take two inputs A and B and put both inputs to two binary operators.

The operators are an XOR gate and an AND gate.

The AND gate only returns 1 if both inputs are 1. The XOR gate returns 1 if
only one input is 1.

The XOR gate returns the second “digit” while the AND date returns the first.

This means we take two number at either 0 or 1, and return beteen 0 and 2 in
binary form.

2.3.2 Full adder

If we are adding, say, a 2 bit number, then we need the abilty to carry numbers.
The full adder takes two numbers, and also a carry from the previous digit. The
full adder then adds these three numbers.

The carry from each full adder (or half adder) is then passed to the next digit.

If the carry is 1 for the final digit then there has been an overflow.
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2.3.3 N-bit ALU

An 8-bit ALU processes numbers represented by 8 bits. Similar for 16-, 32- and
64-bit ALUs.

2.4 Succession

2.4.1 Succession function

We can have a unitary succession function by adding 1 to a number using the
full adder.



Chapter 3

Subtraction on natural
numbers

3.1 Subtraction and integers

3.1.1 Subtraction

Subtraction works similarly to addition. The equivalent “half adder” returns
different values, and the carry forward is not used for addition, but for subtrac-
tion.
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Chapter 4

Adding and subtracting
integers

4.1 Integers

4.1.1 Representing integers

We can expand the natural numbers to the integers.

Consider a byte representing the natural numbers. Previously this would have
gone from 0 to 255, with a series of all 1s representing 255.

To introduce integers all numbers with a 1 in the leftmost bit are considered to
be negative.

4.1.2 Signed magnitude

You can use the first bit as the sign. eg −1 is represented as 1001.

The downside to this is that arithmetic operations for integers don’t work.

4.1.3 Representing using one’s complement

If 1 is 0001, −1 is 1110.

One’s complement refers to the NOT operation on the binary number.

The advantage of this approach is that it works well with adders.

Downsides are that negative zero exists (0000 and 1111 are both 0).

In addition logic needs to deal with end-around carry.

13
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4.1.4 Two’s complement

We can represent the value of negative numbers with two’s complement.

In one’s complement, the inverse of a number is the NOT operation on the
binary number.

For two’s complement, the inverse is the number which means x+ inverse(x) =
2n where n is the number of digits.

So we have 0011 as 3, the inverse is 1101 because 3 + 13 = 24 = 16.

The use of two’s complement allows us to use the arithmetical logical units for
the integers.

4.1.5 Using ALUs with integers

We can expand the natural numbers to the integers.

Consider a byte representing the natural numbers. Previously this would have
gone from 0 to 255, with a series of all 1s representing 255.

To introduce integers all numbers with a 1 in the leftmost bit are considered to
be negative.

4.1.6 Two’s complement

We represent the value of these negative numbers with two’s complement. With
two’s complement the number “after” 127 is −128. Note that this does not just
use the first bit as a sign. The use of two’s complement allows us to use the
arithmetical logical units for the integers.



Chapter 5

Multiplication and division
of natural numbers

5.1 Peasant algorithm

5.1.1 Introduction

Bitshifts left for one side, bit shifts right for other.
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Part II

Sequential logic
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Chapter 6

Sequential logic

6.1 Repeated circuits

6.1.1 Introduction

Can string ALUs together.

6.2 Flip flops

6.2.1 Introduction

Alternative to repeated circuits. Take the result and place it at the input. Needs
timer.
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Chapter 7

The difference engine
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Part III

Finite state machines
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Chapter 8

Sequential logic and
finite-state machines

8.1 Finite-state machines

8.1.1 Finite-state machines

A finite-state machine has n states and m possible inputs.

Each combination of state and input returns a new state.

This can be representated with an m by n matrix, or a graph.

This is similar to combinatorial logic, but the output is the new state rather
than a general output.

This means that successive inputs can be given to a finite state machine, whereas
for combinatorial logic only the most recent input matters.

20



Chapter 9

Regular grammars, regular
languages, regular
expressions, and Kleene’s
theorem

9.1 Introduction

9.1.1 Introduction

9.1.2 Kleene’s theorem

Equivalence between regular langauges and finite state machines.

21



Part IV

Pushdown automatons
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Chapter 10

The stack and pushdown
automatons

10.1 Pushdown automatons

10.1.1 Pushdown automatons

In a finite-state machine the action of the machine depends on the state, and on
the input. In a pushdown automaton it also depends on a third input – stack.

In addition, in addition to changing the state, it can also pop the stack, or push
to the stack.

The stack is a list of symbols. It is the first item on the stack which is used to
inform the decision.

A pushdown automaton uses a Last-in First-out (LiFo) stack.
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Chapter 11

Context-free grammar and
context-free langauges

11.1 Introduction

11.1.1 Introduction
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Chapter 12

The Chomsky hierarchy

12.1 Introduction

12.1.1 Introduction
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Part V

Turing machines
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Chapter 13

Turing machines

13.1 Turing machines

13.1.1 Turing machines

A Turing machine is a pushdown automaton where the stack is no longer LiFo.

13.1.2 Opcodes

Input is symbol on tape at head, and internal state. Output is:

+ write symbolt to where head is + move left or write or halt. + new internal
state

This mapping table is the program. Input to the program can be done by setting
the values of the tape at the start.

13.2 Other

13.2.1 Branching

testing for if branches and with target

13.2.2 Instructions

starting cycle. read next instruction pointer. read that instruction. read addi-
tional bytes needed. do instruction. wait clock cycles

cpu instructions can vary by required clocks cpu instructions have addressing
modeds. they also take addresses. defined address length?

cpu has status register. series of bits about status last instruction etc

27
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13.2.3 Addresses

can address using page and offset. two hex for each. can write eg 0x00FF. last
byte of irst page



Chapter 14

Multi-tape Turing
machines, Turing
equivalence and Turing
completeness

14.1 Introduction

14.2 Introduction

14.2.1 Multi-tape Turing machines

14.2.2 Turing equivalence

If two machines can simulate each other they are Turing equivalent.

14.2.3 Turing completeness

If a machine can simulate any Turing machine, it is Turing complete.
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Chapter 15

The Church–Turing thesis

15.1 Turing machines

15.1.1 Church-Turing thesis

There is a link between Turing machines, the lambda calculus and general re-
cursive functions. The functions described by each describe the same thing.
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Chapter 16

Universal Turing machines,
the fetch-decode-execute
cycle, and Turing
completeness

16.1 Introduction

16.1.1 Universal Turing machines

Rather than have the algorithm be part of the Turing machine, the algorithm
is included in the input.

This allows a universal turing machine to simulate any other Turing machine,
given the algorithm as an input.

The computer program is stored in memory on the tape.

16.2 Introduction

16.2.1 The fetch-decode-execute cycle

control unit does: + fetch instruction + decode instruction + execute instruction

Regular Turing machines do not need to do this, as there is no program to
fetch.
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16.3 Turing completeness

16.3.1 Introduction

A computer which can simulate any Turing machine can, by the Church-Turing
thesis, compute any effective method on the natural numbers. Such a machine
is Turing complete.

As the universal Turing machine can simulate any Turing machine, it is Turing
complete.



Part VI

Decidability
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Chapter 17

Non-deterministic Turing
machines, additional
complexity classes
(including NP) and
complement complexity
classes (including co-NP)

17.1 Introduction

17.1.1 Introduction

Deterministic Turing machines don’t have complements, they are closed.
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Chapter 18

Decidable languages

18.1 Introduction

18.1.1 Introduction
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Chapter 19

Reductions

19.1 Introduction

19.1.1 Introduction
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Chapter 20

Rice’s theorem

20.1 Introduction

20.1.1 Introduction
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Chapter 21

Post correspondence
problem

21.1 Introduction

21.1.1 Introduction
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Chapter 22

Entscheidungsproblem

22.1 Introduction

22.1.1 Introduction
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Chapter 23

Semi-decidable languages
and recursively enumerable
sets

23.1 Introduction

23.1.1 Introduction
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Chapter 24

Oracles and Turing
reductions

24.1 Introduction

24.1.1 Turing reduction

Treat other problem as a black box, returned from oracle.

If A can be Turing reduced to B, then if there is an algorithm for B, there is an
algorithm for A.

If A is Turing reducible to B and B is Turing reducible to A then the problems
are Turing equivalent.

Note that this is different to polynomial Turing reduction (Cook reduction).
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Chapter 25

The halting problem

25.1 Introduction

25.1.1 Introduction
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Chapter 26

Busy beaver

26.1 Introduction

26.1.1 Introduction

Find a halting program of a given size which produces the most output possible.

Describes a Turing machine with an alphabet of 2 symbols.
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Stack machines
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Chapter 27

Stack machines, and their
Turing equivalence

27.1 Introduction

27.1.1 Introduction

Extends the pushdown automaton.

To recap, the pushdown automaton had a stack which could be push to, popped,
or an operation done on top values on the stack.

Stack machines are Turing complete.
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Part VIII

Other Turing-complete
abstract machines
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Chapter 28

The analytic engine and its
Turing-equivalence
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Part IX

Register machines
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Chapter 29

Counter machines, and
program counters (aka
instruction pointers) and
instruction registers; and
Turing-equivalence of
counter machines

29.1 Counter machines

29.1.1 Introduction

System has set of registers rather than a tape.

Head of machine points to specific instruction, head position can be changed.
Head moves to next line after running (unless a jump)

Instructions include:

+ Increment given register

+ Decrement given register

+ Clear given register

+ Copy contents of one register to another

+ Jump to instruction if a given register is zero
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+ If two registers have same value then jump to instruction

29.2 Program counters (aka instruction point-
ers)

29.2.1 Introduction

program counter: memory address of next instruction to be executed

program counter has address of next instruction. to load puts address in address
bus. data bus sends instruction to address bus. data bus sends instruction to
CPU

more complex if instruction longer thna 1 byte

The actual instruction is taken from the location stored in the program counter,
and stored in the instruction register

29.3 Turing-equivalence of counter machines

29.3.1 Simulating a Turing machine with a counter ma-
chine

We know from earlier that a 2 stack machine is equivalent to Turing machine.

A stack can be simulated with 2 counters, therefore a 4 counter machine can
simulate a Turing machine.

4 counters can be simulated by 2 counters, and therefore a machine with just 2
counters is Turing equivalent.

29.3.2 Simulating a counter machine with a Turing ma-
chine



Chapter 30

Representing machine code
with mnemonics

30.1 Bit arrays

30.1.1 Mnemonics

Rather than machine code, programs can be written in human readable form.
For example, we can use short English language strings instead of hexidecimal
or binary.

mnemonics for op codes

Using literals (for now just integers) in assembly
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Chapter 31

Random-access machines
and pointers

31.1 Random-access machines

31.1.1 Introduction

Similar to counter machine but:

+ Allows indirect reference of registers. Where r previously would have referred
to the register itself, (eg INC(r), we can now refer to the value of a pointer
using [r]. This allows us to write eg [3] → 4 which means put the value of
register 3 into register 4.

Increments can be rewritten

INC(r) to [r] + 1→ r DEC(r) to [r]− 1→ r

Also for the changes to the instruction register

normally is [IR] + 1 → IR with jump is before JZ(r,z). now if [r] = 0 then
z → IR. if [r]! = 0 then [IR] + 1→ IR

The register machine introduces additional operations, taking advantage of in-
direct operations.

31.2 Pointers

31.2.1 Sort

pointers? addresses? as variables? in stack?
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31.2.2 Pointers

So in first case we have x = 2 and y = 2, and then we want to change both to
3.

In first example, initiate both and store 2 in memory twice. update both.

In second example we can have x and y have the same value of a pointer, pointing
to a third memory location. we can the update this memory location to change
both to 3.

Two variable can be the same by value, but additionally by pointer.

eg x = 2 and y = 2. x == y, but if they have the same pointer, they are the
same thing. changing one changes the other.

We can update x and y will automatically update

When we say x = 2, y = x we are either making y mutable or immutable.
mutable means same pointer. language specific rules apply.



Chapter 32

Random-access
stored-program machines

32.1 Introduction

32.1.1 Introduction

Like a random-access machine but stores the program in the registers rather
than separately.

This is similar to the relationship between a universal Turing machine and a
Turing machine.
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Chapter 33

Implementing a stack using
a register machine, the
frame pointer, the stack
pointer, the call stack,
return addresses, and the
stack buffer overflow

33.1 Introduction

33.1.1 Introduction

Don’t need external memory, can just do this in registers.

33.1.2 The stack counter and adding to the stack

33.1.3 Popping the stack

33.1.4 Stack buffer overflow
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Chapter 34

Simulating finite state
machines with registers

34.1 Introduction

34.1.1 Introduction
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Part X

Making RASP machines
more realistic
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Chapter 35

Limited bit registers - 8-bit,
16-bit etc CPUs

35.1 Introduction

35.1.1 Words

Words (size of register on a pc. eg 8 bits on 8bit, 64 bit on 64 bit)

What does it mean eg to be 8 bit register machine?

16-bit means registers have 16 bits. Can cover 0 to 65535.

8-bit means registers have 8 bits. Can cover 0 to 255.

Each possible value in an address register can refer to a unique word in memory.

35.1.2 Bytes and nibbles

Bytes (8 bit by standard)

Nibbles (4 bit)

35.1.3 How much memory can be accessed by registers

For an n-bit register there can be 2n possible values, and this can cover n ∗ 2n

bits of data, because each word stores n bits.

For a 8-bit register this means 8 ∗ 28 = 2048 bits, or 256 bytes.

For a 16-bit register this means 16 ∗ 216 = 1048576 bits, or 65536 bytes.
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35.1.4 Using hexidecimal to refer to memory addresses

Can refer to memory addresses using $FF if 8-bit (16 ∗ 16 = 28).

Can refer to memory addresses using $FFFF if 16-bit (164 = 216).

35.1.5 Memory extension beyond 216 bytes. Memory seg-
mentation

35.1.6 Other

Bit arrays

Bit fields (special use cases for bit arrays? bit arrays more fundamental. bit
field more like ”we can use first bit for checking if zero”



Chapter 36

External memory, the data
bus and the address bus

36.1 Introduction

36.1.1 Using buses to read from and write to external
memory

Buses facilitate communication between the CPU (including registers) and mem-
ory.

bus takes read (just address) write (address and data)

things can read, rw or write on bus. devices on bus can monitor address outputs
of cpu. if address corresponds to device can take actions.

36.1.2 Address bus

Address bus connects to part of memory. setting the address bus to x will allow
accessing ram at x.

36.1.3 Data bus

Data bus reads or writes to memory at location of address bus.

eg if loading byte of ram at position #FF00 to accumulator, address bus is
#FF00.
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Chapter 37

Adding an Arithmetic Logic
Unit (ALU) to a CPU

37.1 Introduction

37.1.1 Introduction

We can add an ALU to a register machine. This can give it:

+ Addition. + Subtraction. + Bitmasking. + Bitwise operations.
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ARM basics
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Chapter 38

Advanced RISC Machines
(ARM): mnemonics for
mov and integer ALU
instructions

38.1 Introduction

38.1.1 Introduction

mov r0, #0x153

makes register 0 hold 0x153

using # indicates an immediate value. value is created by CPU

mov r1, r0 copies r0 to r1

add r2, r0, r1 places addition of r0 and r1 in r2 instead of eg add r0,r0,r1 can
write add r0,r1

as well as add can do sub mul and (bitwise) orr (bitwise) eor (exclusive or) lsl
(logical left shift) lsr (logical right shift)
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Chapter 39

Branches and jumps, loops
and branch tables in ARM

39.1 Introduction

39.1.1 Introduction
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Chapter 40

External memory, the data
bus and the address bus in
ARM

40.1 Introduction

40.1.1 Address bus

Address bus connects to part of memory. setting the address bus to x will allow
accessing ram at x.

40.1.2 Data bus

Data bus reads or writes to memory at location of address bus.

eg if loading byte of ram at position #FF00 to accumulator, address bus is
#FF00.

using RAM: LDR and STR str r0, [r1] store value in r0 at memory location
indicated by r1 ldr r0, [r1] load value at r1 in memory to r0 ldr r0, [r1, #4] load
value at r1 offset by 4 to r0
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Chapter 41

ARM pseudo instruction:
”=”

41.1 Introduction

41.1.1 Introduction

= pseudo instruction

= stuff is shortcut, assember turns it into things with # instead

use of ”=”

ldr r0, =153
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Part XII

Implementing functions in
ARM
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Chapter 42

ARM stack operations

42.1 Introduction

42.1.1 Introduction
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Chapter 43

Subroutines in ARM
assembly

43.1 Introduction

43.1.1 Introduction

43.1.2 Side-effects
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Chapter 44

The Wheeler Jump

44.1 Introduction

44.1.1 Introduction

Used on some machines which didn’t have ability to save return address. relevant
for registers/stacks?

Before calling the subroutine, put the program counter’s current location in the
accumulator.

At start of subroutine, take the location in the accumulator, add to it (eg just
1) and write this to the end of the subroutine CODE.

Then when subroutine ends, can go back.

Limitations: slow because writes to memory, not register or stack. also can’t do
recursion.
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ARM assembly
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Chapter 45

Assembling assembly code
to machine code

45.1 Assembly code

45.1.1 Assemblers

Assembly code can be converted to machine code using an assembler.

The assembler takes the assembly code as input and returns machine code.
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Chapter 46

Macros

46.1 Introduction

46.1.1 Introduction
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Chapter 47

text, data and bss

47.1 Introduction

47.1.1 Introduction

three parts? + .bss section (block starting symbol) has unitialised statically
allocated data + .data section has initialised statically allocated data + code
(aka text) which has the instructions *

text file starts eg like

section .bss

section .data

hello: db "Hello world!", 10

helloLen: equ $-hello

section .text

global _start

_start:
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ARM other
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Chapter 48

ARM floating point ALU

48.1 Introduction

48.1.1 Introduction
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Part XV

Integer maths algorithms
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Chapter 49

Algorithms for integer
multiplication

49.1 Introduction

49.1.1 Introduction
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Chapter 50

Algorithms for integer
division, modulus and
remainders

50.1 Introduction

50.1.1 Introduction
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Chapter 51

Calculating natural number
square roots

51.1 Introduction

51.1.1 Introduction

We might want an algorithm that returns 4 for f(17). The floor of the square
root.

This is useful, for example, for factorising a number.

We can start at 0 and square numbers and see if the result is larget than x,
incrementing each time.

while i * i <= x:

x += 1;

return x - 1;
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Chapter 52

Identifying primes

52.1 Identifying primes

52.1.1 Identifying primes

different to factorising. We don’t care what the actual factors are, just see if
it’s prime

52.1.2 Fermat’s primality test

Fermat’s little theorem recap

Fermat’s primality test

From Fermat’s little theorem we know

an−1 = 1mod(n)

Where a is an integer and n is prime.
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Chapter 53

Factorising natural numbers

53.1 Integer factorisation

53.1.1 Trial division

We have x

Divide by numbers between 2 and x

Only need to go to sqrt x

Don’t need to divide by even numbers other than 2

algorithm for checking if number is a prime

loop up dividing number from 2

if divides, add factor list and divide target number by that

stop when i reaches number

eg for 45

divide 2? no

divide 3? yes :¿ 15

divide 3? yes :¿ 5

divide 4? no

divide 5? yes :¿ 1

6¿1 so stop

number is prime if list just contains target
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CHAPTER 53. FACTORISING NATURAL NUMBERS 83

don’t have to worry about including non primes in list, as will already have
divded by that amount

53.1.2 Fermat’s method

Identify the integer as the difference of two squares, and use this.

x = a.b

We use the midpoint of the two as c =
a+ b

2

This only works for odd numbers. If we have

The we have:

• a = c+ d

• b = c− d

• x = (c+ d)(c− d)

• x = c2 − d2

We can test this by trying a to get a2−x, and seeing if this is a square number.



Part XVI

Arrays and simple array
algorithms

84



Chapter 54

Arrays

54.1 Introduction

54.1.1 Defining arrays

A sequence

54.2 Read operations on arrays

54.2.1 The match operation

54.2.2 The read operation

A sequence.

85



Chapter 55

Reversing arrays

55.1 Introduction

55.1.1 Introduction
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Chapter 56

Reductions on arrays

56.1 Getting the max and min

56.1.1 Getting the max and min

Reduction algorithm:

+ Take array. If array is length 0 throw problem

+ If array is length 1 return element

+ If array is length 2 do pairwise comparison on the pair (eg return bigger of
two for max)

+ If array is length greater than 2, recursively call reduction on reduction of
first two elements and the rest of the array.

Examples of reductions that can be done include:

+ Min

+ Max

+ Sum

+ Count if

+ Sum if
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Chapter 57

Sorted arrays and bubble
sort

57.1 Sorted lists

57.1.1 Sorted arrays

There can be a total ordering on elements in a array.

We want to return an array such that only the ordering is changed.

∀nm[array[n] > array[m]↔ n > m]

57.2 Checking if an array is sorted

57.2.1 Checking a sortable array

57.3 Bubble sort

57.3.1 Bubble sort

Take the first two items. See if they are sorted. If they are not, swap them.

Then move to next pair, and do same.

Keep going until the end.

If the number of swaps was greater than 0, loop around again.

Worst case: O(n2) comparisons and O(n2) swaps. Average case: O(n2) com-
parisons and O(n2) swaps.

Best case: O(n) comparisons and O(1) swaps.

88



CHAPTER 57. SORTED ARRAYS AND BUBBLE SORT 89

This is an in place algorithm.



Chapter 58

Selection sort

58.1 Selection sort

58.1.1 Selection sort

Set up another array of same length. the sorted array.

Go through unsorted array and look for min (can use reduction algorithm).

Put minimum in sorted list to left.

Remove that element from unsorted.

+ if linked list can just remove (but we haven’t gotten to those yet) + if array,
make new array?

keep going until sorted list exists.

Worst case same as bubble (O(n2) for comparisons and swaps) but average is
only O(n) swaps.

Intuitively because each element only gets moved once.
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Chapter 59

Insertion sort

59.1 Insertion sort

59.1.1 Insertion sort on arrays

start by taking the first two elements and either keeping or swapping. This is
the sorted part of the list now.

Go to next element If bigger, ok next If smaller, scan across sorted part of list
to see where it belongs. Move elements up as necessary and insert the element.

Average O(n2) for swaps and comparisons.
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Chapter 60

Searching sorted and
unsorted arrays

60.1 Identifying the location of an element in an
array

60.1.1 Identifying the location of an element in an array

60.2 Getting location in sorted array with bi-
nary search

60.2.1 Binary search on a sorted array

Get midddle item in array, if less than target number, then can drop lower half
of array and iterate.
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Chapter 61

Filtering and slicing arrays

61.1 Introduction

61.1.1 Introduction
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Chapter 62

Concatenating arrays

62.1 Introduction

62.1.1 Introduction
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Chapter 63

Merging sorted arrays

63.1 Introduction

63.1.1 Introduction
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Part XVII

Decision problems and
assessing algorithms
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Chapter 64

Decision problems

64.1 Introduction

64.2 Introduction
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Chapter 65

Correctness of algorithms

65.1 Correctness

65.1.1 Correctness

An algorithm is correct if it produces the expected output for each input.

65.1.2 Partial and total correctness

An algorithm is only partially correct if may not terminate. Otherwise it is
totally correct.

65.1.3 Formal verification

65.1.4 Model checking

Model checking allows the formal verification of algorithms with finite inputs.
test every possible input.

65.1.5 Deductive verification

Check the parts of the algorithm using theorem provers.
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Chapter 66

Measuring algorithmic
complexity with big-O
notation

66.1 Efficiency

66.1.1 Algorithmic efficiency

An algorithm takes memory and time to run. Analysing these characteristics of
algorithms can enable effective choice of algorithms.

Complexity is described using big-O notation. So an algorithm with parameters
θ would have a time efficiency of O(f(θ)) where f(θ) is a function of θ.

Generally we expect f(θ) to be weakly increasing for all θ. As we add additional
inputs, these would not decrease the time or space requirements of the algorithm.

An algorithm which did not change complexity with inputs would have a con-
stant as the largest term. So we would write O(c).

An algorithm which increase linearly with inputs could be written O(θ).

An algorithm which increase polynomially with inputs could be written O(θk).

An algorithm which increased exponentially could be written O(eθ).

Complexity can differ between worst-case scenarios, best-case scenarios and av-
erage case scenarios.

We can describe logical systems by completeness (all true statements are the-
orems) and soundness (all theorems are true). We have similar definitions for
algorithms.

99



CHAPTER 66. MEASURING ALGORITHMIC COMPLEXITYWITH BIG-O NOTATION100

An algorithm which returns outputs for all possible inputs is complete. An
algorithm which never returns an incorrect output is optimal.

66.1.2 Big-O and little-o recap

66.1.3 Time efficency

66.1.4 Space efficiency

66.1.5 Verifying answers

NP NP-hard NP-complete

66.1.6 Decision problems

Return yes or no.

66.2 Calculating the cost of an algorithm

66.2.1 Instruction costs

66.2.2 Efficiency of loops

number of times each instruction called

66.2.3 Big-O recap (take from maths)

66.2.4 Efficiency of functions with arguments

best case, worst case



Chapter 67

P (PTIME), EXPTIME,
DTIME and simulation by
Turing-equivalent machines
in polynomial time

67.1 Introduction

67.1.1 Introduction

P (aka PTIME): Polynomial in time. O(poly(n))

EXPTIME: O(2poly(n))

DTIME(f(n)) .ie P is DTIME(poly(n))
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Chapter 68

Hardness of problems and
completeness of problems in
a given complexity class

68.1 Introduction

68.1.1 Hardness

A problem p is hard for a class C if every problem in C can be reduced to p.

That is, p is C-hard if every problem in C can be reduced to p.

68.1.2 Completeness

A problem p is complete for a class C if it is C-hard and in C.

If an ”easy” solution is found for a problem p which is C-complete, there is an
”easy” solution to all problems in C.
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Chapter 69

L (LSPACE), PSPACE,
EXPSPACE, DSPACE

69.1 Introduction

69.1.1 Introduction

L (aka LSPACE): Logarithmic in space. O(log(n)

PSPACE: Polynomial in space: O(poly(n).

EXPSPACE: O(2poly(n))

DSPACE(f(n)) .ie L is DSPACE(log(n))
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Chapter 70

The relationships between
P, L and PSPACE

70.1 Introduction

70.1.1 Introduction

P is no larger than PSPACE.

P is at least as big as L.
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Part XVIII

Problems reducible to
decision problems: Search
problems and optimisation

problems
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Chapter 71

Search problems and
reducing them to decision
problems

71.1 Introduction

71.2 Introduction
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Chapter 72

Optimisation problems and
reducing them to decision
problems

72.1 Introduction

72.2 Introduction
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Part XIX

Problems not reducible to
decision problems:

Counting problems and
function problems
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Chapter 73

Counting problems and
their complexity classes
(including #P)

73.1 Introduction

73.2 Introduction
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Chapter 74

Function problems and
their complexity classes
(including FP)

74.1 Introduction

74.2 Introduction
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Chapter 75

Polynomial-time reductions

75.1 Introduction

75.1.1 Introduction

75.1.2 Polynomial-time Turing reduction (the Cook re-
duction)

Solve using polynomial number of calls to another problem, and polynomial
amount of time outside that.

75.1.3 Many-one reduction

Special case of the Cook reduction. Transform input of one problem to input of
another, where answers are the same.

Transformation of inputs must be done in polynomial.

75.1.4 Truth table reduction

Another special case of the Cook reduction.

Transforms inputs into a number of other inputs to a different problem. Result
is a function of the outputs of the other problem.
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Chapter 76

Log-space reductions

76.1 Introduction

76.1.1 Introduction

112



Part XX

Simple lossess compression
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Chapter 77

Simple lossless compression

77.1 Lossless compression

77.1.1 Compression rates

77.1.2 Run-length encoding: The ND model

eg 12W6RABC4D is WWWWWWWWWWWWRRRRRRABCDDD

or 4444444aaaaaa123 to 447aa6123

ND model. N is number of repeats, D is what to repeat. if bigger than N can
take, then split up

eg 111111111111: 9131

77.1.3 RLE with binary/bitstream

thing next on how that works with binary/bitsteam (eg could do 3 bits at a
time for 85)

77.1.4 Run-length encoding: The data packet model

If there is something which repeats a lot (eg 0) then can split that out and then
do data packets for the rest

eg if we have 00003640000000000006305: 04364090363015

this is RND model?

The strength of RLE with data packets depends on frequency of special char-
acter.
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77.1.5 Run-length encoding with delta encoding

we can use delta encoding to make repeated characters more likely to be 0 and
non zero is present.

do 2 digits to show going to be a run

what about cases like 1111122222

becomes 115225, but how do we know it’s not 52 1s, a 2 then a 5? encoding
tricks?

77.1.6 LZW compression

A. Lempel and J. Ziv, with later modifications by Terry A. Welch

code table. eg 212 = 4096 codes. first 256(0− 255) are the literal bytes

256-4095 are blocks of bytes

algorithm is how to determine code table

77.1.7 zip, deflate and lzma2

zip

deflate

lzma2


