
C++, objects, generic programming, functional

programming and clang/LLVM, and transpilers

Adam Boult (www.bou.lt)

April 30, 2025



Contents

Preface 2

I Basic changes from C 3

1 Default function parameters 4

2 Increments and decrements 5

3 rvalues in C++ 6

4 auto 7

5 Reference data types in C++ 8

6 Control flow 9

7 Exception handling 10

II Structs in C++ 11

8 Adding methods to structs in C++ 12

9 Struct inheritance in C++ 13

10 Static variables in structs in C++ 15

III Objects and classes 16

11 Objects 17

12 Object-Oriented Programming 19

1



CONTENTS 2

IV Generic programming 20

13 Generic functions 21

14 Generic classes 22

15 Casting in C++ 23

V Compiling C++ 24

16 g++ 25

17 cmake 26

VI C++ libraries 27

18 Packages and namespaces 28

19 C standard library in C++ 29

20 C++ Standard Library 30

VII Parallel programming in C++ 31

VIII Clang and LLVM 32

21 Clang and LLVM 33



Preface

This is a live document, and is full of gaps, mistakes, typos etc.

3



Part I

Basic changes from C

4



Chapter 1

Default function parameters

1.1 Introduction

1.1.1 Introduction

can put default function parameters in function. unlike c can have default
parameters for functions, have to be trailing parameters

5



Chapter 2

Increments and decrements

2.1 Introduction

2.1.1 Introduction

--a; // this was introduced in c++, not in c. c just has a-- (ditto for ++)

y=x++;

y=--x;

if x is 2, result of both is x=3 but top y=2, bottom y=3. order of evaluation.
does this apply to regular c?

6



Chapter 3

rvalues in C++

3.1 Introduction

3.1.1 Introduction

7



Chapter 4

auto

4.1 Introduction

4.1.1 Introduction

auto keyword in c++ mean don’t have to label type if implied.

auto x=1L different meaning from auto in c

8



Chapter 5

Reference data types in
C++

5.1 Introduction

5.1.1 Introduction

reference as variable type in c++ (c has pointers, and uses & operator, but can’t
do int &r, but can in cpp?)

9



Chapter 6

Control flow

6.1 Introduction

6.1.1 Introduction

same as c, also have foreach to iterate over arrays

int vals[] {1, 2, 3, 4, 5};

for (auto val : vals) {

std::cout << val << std::endl;

}

can use this over strings

for (char c : str)

{

cout << "[" << c << "]";

}

10



Chapter 7

Exception handling

7.1 Introduction

7.1.1 Introduction

c++ exception handling (not in c)

try

catch

throw

uses Resource acquisition is initialization (RAII) to implement?

for object to be initialised, it must have resources allocated.

all stack objects are destroyed (stack unwinding) if an exception is found

11



Part II

Structs in C++

12



Chapter 8

Adding methods to structs
in C++

8.1 Introduction

8.1.1 Introduction

CPP constructor

Destructor

these can be done on structs? as can methods more generally? what is difference
between structs and objects then? priv/pub stuff?

13



Chapter 9

Struct inheritance in C++

9.1 Introduction

9.1.1 Introduction

struct point_2d {

int x;

int y;

};

struct point_3d: point_2d {

int z;

};

point_3d my_point;

my_point.x = 1;

my_point.y = 2;

my_point.z = 3;

9.1.2 Multiple inheritance

struct point_2d {

int x;

int y;

};

struct colour {

char red;

char green;

14



CHAPTER 9. STRUCT INHERITANCE IN C++ 15

char blue;

};

struct point_3d_colour: point_2d, colour {

int z;

};



Chapter 10

Static variables in structs in
C++

10.1 Introduction

10.1.1 Introduction

can do static on variable in struct in c++, can’t in c

16



Part III

Objects and classes

17



Chapter 11

Objects

11.1 Introduction

11.1.1 Keys and values

11.1.2 Classes

11.1.3 Integer caching

If we set x = 2 we can either create 2 in memory, or simply point x to 2, which
is already in memory

That means if we do x = 2 y = 2 they have the same pointer.

Can also cache some other common data values, eg empty lists.

Makes sense if pointer is smaller in memory than value.

18



CHAPTER 11. OBJECTS 19

11.2 Representing objects

11.2.1 Representing a single object

11.2.2 Null in objects

11.2.3 Representing a class with a multiple array (ie 2d)

11.2.4 Representing a class with a single array (ie 1d)

11.3 Functions with objects

11.3.1 Creating new objects

11.3.2 Getting values by field

11.3.3 Adding fields

11.3.4 Changing values in fields

11.4 Hierarchies of objects

11.4.1 Inheritance



Chapter 12

Object-Oriented
Programming

12.1 Introduction

12.1.1 Introduction

in objects, OOP. essentially, all variable types are objects. inc integers, floats,
lists etc

20



Part IV

Generic programming

21



Chapter 13

Generic functions

13.1 Introduction

13.1.1 Introduction

using multiple classes in a generic function function templates

template <class myType>

myType GetMax (myType a, myType b) {

return (a>b?a:b);

}

int x,y;

GetMax <int> (x,y);

note: can use

template <class myType>

template <typename myType>

interchangeably

22



Chapter 14

Generic classes

14.1 Introduction

14.1.1 Introduction

using multiple classes in a generic class

23



Chapter 15

Casting in C++

15.1 Introduction

15.1.1 Introduction

in c had casting

casting

int value = 1;

float y = (float) value

cpp can also do

static_cast<float>(value)

other options in c++

reinterpret_cast<>()

const_cast<>()

dynamic_cast<>()

24



Part V

Compiling C++

25



Chapter 16

g++

16.1 Introduction

16.1.1 Introduction

gnu compiler collection includes gcc (gnu c compiler) and g++

26



Chapter 17

cmake

17.1 Introduction

17.1.1 Introduction

27



Part VI

C++ libraries

28



Chapter 18

Packages and namespaces

18.1 Introduction

18.1.1 Introduction

cpp double colon meaning

when do use by eg

#include <iostream>

std::cout

if want to just use eg cout

using namespace std;

cout

can use namespace in a specific scope, eg a function.

29



Chapter 19

C standard library in C++

19.1 Introduction

19.1.1 Introduction

30



Chapter 20

C++ Standard Library

20.1 Introduction

20.1.1 Introduction

31



Part VII

Parallel programming in
C++

32



Part VIII

Clang and LLVM

33



Chapter 21

Clang and LLVM

21.1 Introduction

21.1.1 Introduction

34


