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Part 1

Analytic geometry



Chapter 1

Points, lines and affine
transformations

1.1 Affine spaces

1.1.1 Lines
1.1.2 Parallel lines



Chapter 2

Euclidian transformations,
lengths and angles

2.1 Linear metrics

2.1.1 Metrics

We defined a norm as:

|v]| = vT Mwv

A metric is the distance between two vectors.

d(u,v) = ||[u —v|| = (u—v)TM(u—v)

Metric space

A set with a metric is a metric space.

2.1.2 Inducing a topology

Metric spaces can be used to induce a topology.

2.1.3 Translation symmetry
The distance between two vectors is:
(v —w)TM(v—w)

So what operations can we do now?

As before, we can do the transformations which preserve u” Mwv, such as the
orthogonal group.
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But we can also do other translations
(v —w)TM(v—w)
T Moy + wT Mw — vT Mw — wT Mv

so symmetry is now O(3,1) and affine translations

Translation matrix

[[1, ][0, 1]] moves vector by x.

2.2 Specific groups

2.2.1 The affine group
2.2.2 The Euclidian group
2.2.3 The Galilean group
2.2.4 The Poincaré group

2.3 Non-linear norms

2.3.1 L, norms (p-norms)
L* norm

This generalises the Euclidian norm.
llallp = (3 [f?)”

This can defined for different values of p. Note that the absolute value of each
element in the vector is used.

Note also that:
||

Is the Euclidian norm.

Taxicab norm

This is the L' norm. That is:

llzll =20, |2l
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Angles
Cauchy-Schwarz

2.4 To linear forms

2.4.1 Norms
We can use norms to denote the ”length” of a single vector.
[lv]l = V/{v,v)

[lv]| = Vv*Mv

Euclidian norm

If M = I we have the Euclidian norm.
ol = vorv

If we are using the real field this is:

o]l = v 2iy v7

Pythagoras’ theorem

If n = 2 we have in the real field we have:

oIl = v/vF + 03

We call the two inputs x and y, and the length z.
= VBT

22 = 22 4 g2

2.4.2 Angles
Recap: Cauchy-Schwarz inequality

This states that:

[(u, v) [ < (u, u) (v, )
Or:

(v, u){u, v) < (u,u)(v,v)

Introduction

(v, u)(u, v) < (u, u){v,v)

(v, u){u, v)

e < el
[l [-[]o]]
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lalldlol] - ()
o) = Tl o]
B (u, v)
<0s(6) = TRl el
2.5 Other

2.5.1 Convex hulls



Chapter 3

Volumes, perimeters and
surface areas



Chapter 4

2D polygons

4.1 Elementary geometry in 2 dimensions

4.1.1 Triangles

Area of a triangle
Circumference of a triangle
Sum of angles of a triangle

Angles in a triangle add to .

4.1.2 Quadrilaterals
4.1.3 Oblongs

Area of an oblong
Circumference of an oblong
4.1.4 Squares

Area of a square

A=1?

Circumference of a square

C =4

Angles in a square

Angles in a square sum to 27.
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4.1.5 Pentagon
4.2 Other
4.2.1 Border
4.2.2 Interior
4.2.3 Open

4.2.4 Closed
4.2.5 Self-intersecting polygon
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Chapter 5

3D polygons

5.1 Elementary geometry in 3 dimensions

5.1.1 Pyramid

5.1.2 Cubes
Volume of a cube:
V=18

Surface area of a cube:

A =6l?
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Chapter 6

Algebraic geometry and
spheres

6.1 Circles

6.1.1 Defining circles

2?2 4 g2 = 12

6.1.2 Area of a circle

A=rmr?

6.1.3 Circumference of a circle
C =2nr

6.2 Spheres

6.2.1 Defining spheres

22 4y 422 =12

6.2.2 Volume of a sphere
V =

6.2.3 Surface area of a sphere
A=
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This is a live document, and is full of gaps, mistakes, typos etc.
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