Analytic geometry and Euclidian space

Adam Boult (www.bou.lt)

July 9, 2025

Contents

Ι	Analytic geometry	2
1	Points, lines and affine transformations	3
2	Euclidian transformations, lengths and angles	4
3	Volumes, perimeters and surface areas	8
4	2D polygons	9
5	3D polygons	11
6	Algebraic geometry and spheres	12
Preface		13

Part I

Analytic geometry

Points, lines and affine transformations

- 1.1 Affine spaces
- 1.1.1 Lines
- 1.1.2 Parallel lines

Euclidian transformations, lengths and angles

2.1 Linear metrics

2.1.1 Metrics

We defined a norm as:

 $||v|| = v^T M v$

A metric is the distance between two vectors.

 $d(u, v) = ||u - v|| = (u - v)^T M(u - v)$

Metric space

A set with a metric is a metric space.

2.1.2 Inducing a topology

Metric spaces can be used to induce a topology.

2.1.3 Translation symmetry

The distance between two vectors is:

 $(v-w)^T M(v-w)$

So what operations can we do now?

As before, we can do the transformations which preserve $u^T M v$, such as the orthogonal group.

But we can also do other translations

 $(v-w)^T M(v-w)$ $v^T M v + w^T M w - v^T M w - w^T M v$ so symmetry is now O(3,1) and affine translations

Translation matrix

[[1, x][0, 1]] moves vector by x.

2.2 Specific groups

- 2.2.1 The affine group
- 2.2.2 The Euclidian group
- 2.2.3 The Galilean group
- 2.2.4 The Poincaré group

2.3 Non-linear norms

2.3.1 L_p norms (*p*-norms)

L^P norm

This generalises the Euclidian norm.

 $||x||_p = (\sum_{i=1}^n |x|_i^p)^{1/p}$

This can defined for different values of p. Note that the absolute value of each element in the vector is used.

Note also that:

 $||x||_2$

Is the Euclidian norm.

Taxicab norm

This is the L^1 norm. That is:

 $||x||_1 = \sum_{i=1}^n |x|_i$

Angles

Cauchy-Schwarz

2.4 To linear forms

2.4.1 Norms

We can use norms to denote the "length" of a single vector.

$$||v|| = \sqrt{\langle v, v \rangle}$$
$$||v|| = \sqrt{v^* M v}$$

Euclidian norm

If M = I we have the Euclidian norm.

$$||v|| = \sqrt{v^* v}$$

If we are using the real field this is:

$$||v|| = \sqrt{\sum_{i=1}^{n} v_i^2}$$

Pythagoras' theorem

If n = 2 we have in the real field we have:

$$||v|| = \sqrt{v_1^2 + v_2^2}$$

We call the two inputs x and y, and the length z.

$$z = \sqrt{x^2 + y^2}$$
$$z^2 = x^2 + y^2$$

2.4.2 Angles

Recap: Cauchy-Schwarz inequality

This states that:

$$\begin{split} |\langle u,v\rangle|^2 &\leq \langle u,u\rangle \dot{\langle} v,v\rangle \\ \text{Or:} \end{split}$$

 $\langle v,u\rangle \langle u,v\rangle \leq \langle u,u\rangle \dot{\langle} v,v\rangle$

Introduction

$$\begin{split} \langle v, u \rangle \langle u, v \rangle &\leq \langle u, u \rangle \dot{\langle} v, v \rangle \\ \frac{\langle v, u \rangle \langle u, v \rangle}{||u||.||v||} &\leq ||u||.||v|| \end{split}$$

$$\frac{||u||.||v||}{\langle v, u \rangle} \ge \frac{\langle u, v \rangle}{||u||.||v||}$$
$$\cos(\theta) = \frac{\langle u, v \rangle}{||u||.||v||}$$

2.5 Other

2.5.1 Convex hulls

Volumes, perimeters and surface areas

2D polygons

4.1 Elementary geometry in 2 dimensions

4.1.1 Triangles

Area of a triangle Circumference of a triangle Sum of angles of a triangle Angles in a triangle add to π .

4.1.2 Quadrilaterals

4.1.3 Oblongs Area of an oblong Circumference of an oblong 4.1.4 Squares Area of a square $A = l^2$ Circumference of a square C = 4lAngles in a square

Angles in a square sum to 2π .

CHAPTER 4. 2D POLYGONS

- 4.1.5 Pentagon
- 4.2 Other
- 4.2.1 Border
- 4.2.2 Interior
- 4.2.3 Open
- 4.2.4 Closed
- 4.2.5 Self-intersecting polygon

3D polygons

5.1 Elementary geometry in 3 dimensions

- 5.1.1 Pyramid
- 5.1.2 Cubes

Volume of a cube: $V = l^3$ Surface area of a cube: $A = 6l^2$

Algebraic geometry and spheres

6.1 Circles

6.1.1 Defining circles $x^2 + y^2 = r^2$

6.1.2 Area of a circle $A = \pi r^2$

6.1.3 Circumference of a circle $C = 2\pi r$

6.2 Spheres

6.2.1 Defining spheres $x^2 + y^2 + z^2 = r^2$

6.2.2 Volume of a sphere *V* =

6.2.3 Surface area of a sphere *A* =

Preface

This is a live document, and is full of gaps, mistakes, typos etc.