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Part 1

Analytic geometry



Chapter 1

Points, lines and affine
transformations

1.1 Affine spaces

1.1.1 Lines
1.1.2 Parallel lines



Chapter 2

Euclidian transformations,
lengths and angles

2.1 Linear metrics

2.1.1 Metrics

We defined a norm as:

|v]| = vT Mwv

A metric is the distance between two vectors.

d(u,v) = ||[u —v|| = (u—v)TM(u—v)

Metric space

A set with a metric is a metric space.

2.1.2 Inducing a topology

Metric spaces can be used to induce a topology.

2.1.3 Translation symmetry
The distance between two vectors is:
(v —w)TM(v—w)

So what operations can we do now?

As before, we can do the transformations which preserve u” Mwv, such as the
orthogonal group.
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But we can also do other translations
(v —w)TM(v—w)
T Moy + wT Mw — vT Mw — wT Mv

so symmetry is now O(3,1) and affine translations

Translation matrix

[[1, ][0, 1]] moves vector by x.

2.2 Specific groups

2.2.1 The affine group
2.2.2 The Euclidian group
2.2.3 The Galilean group
2.2.4 The Poincaré group

2.3 Non-linear norms

2.3.1 L, norms (p-norms)
L* norm

This generalises the Euclidian norm.
llallp = (3 [f?)”

This can defined for different values of p. Note that the absolute value of each
element in the vector is used.

Note also that:
||

Is the Euclidian norm.

Taxicab norm

This is the L' norm. That is:

llzll =20, |2l
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Angles
Cauchy-Schwarz

2.4 To linear forms

2.4.1 Norms
We can use norms to denote the ”length” of a single vector.
[lv]l = V/{v,v)

[lv]| = Vv*Mv

Euclidian norm

If M = I we have the Euclidian norm.
ol = vorv

If we are using the real field this is:

o]l = v 2iy v7

Pythagoras’ theorem

If n = 2 we have in the real field we have:

oIl = v/vF + 03

We call the two inputs x and y, and the length z.
= VBT

22 = 22 4 g2

2.4.2 Angles
Recap: Cauchy-Schwarz inequality

This states that:

[(u, v) [ < (u, u) (v, )
Or:

(v, u){u, v) < (u,u)(v,v)

Introduction

(v, u)(u, v) < (u, u){v,v)

(v, u){u, v)

e < el
[l [-[]o]]
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lalldlol] - ()
o) = Tl o]
B (u, v)
<0s(6) = TRl el
2.5 Other

2.5.1 Convex hulls



Chapter 3

Volumes, perimeters and
surface areas



Chapter 4

2D polygons

4.1 Elementary geometry in 2 dimensions

4.1.1 Triangles

Area of a triangle
Circumference of a triangle
Sum of angles of a triangle

Angles in a triangle add to .

4.1.2 Quadrilaterals
4.1.3 Oblongs

Area of an oblong
Circumference of an oblong
4.1.4 Squares

Area of a square

A=1?

Circumference of a square

C =4

Angles in a square

Angles in a square sum to 27.
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4.1.5 Pentagon
4.2 Other
4.2.1 Border
4.2.2 Interior
4.2.3 Open

4.2.4 Closed
4.2.5 Self-intersecting polygon
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Chapter 5

3D polygons

5.1 Elementary geometry in 3 dimensions

5.1.1 Pyramid

5.1.2 Cubes
Volume of a cube:
V=18

Surface area of a cube:

A =6l?

12



Chapter 6

Algebraic geometry and
spheres

6.1 Circles

6.1.1 Defining circles

2?2 4 g2 = 12

6.1.2 Area of a circle

A=rmr?

6.1.3 Circumference of a circle
C =2nr

6.2 Spheres

6.2.1 Defining spheres

22 4y 422 =12

6.2.2 Volume of a sphere
V =

6.2.3 Surface area of a sphere
A=

13



Part 11

Mechanics with a constant
field: SUVAT

14



Chapter 7

Newtonian mechanics

7.1 Introduction

7.1.1 SUVAT

Introduction
For a constant acceleration environment we want to find equations to link:
o Initial speed: vy,
e End speed: vy,
e Time: t; — to
e Acceleration: a

e Displacement s;, — s¢,

The SUVAT equations
These are the following, and are derived below.

o v, =alty —to) + v,

1
o (81, — Sty) = vy (t1 — o) + 5(1(151 —tg)?

1
(] (Stl — Sto) = Uty (tl — to) — §a(t1 — t0)2

Ut21 = Ut20 + 2a(St1 - Stg)

Vg, + Uty

i (Stl - Sto) = (tl - tO) 2

15
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Equation 1: No displacement
This equation is:
ve, = a(ty — to) + g,

To derive this start with:

08y
vy 1= S
0y
"ot
If acceleration is constant, then
o
5 a
vy = [ adt 4+ vg

v = at + vg
Equation 2: No end velocity
This equation is:

1
(8t — St5) = vt (t1 — to) + ia(tl —t0)?

To derive this start with:

L 6515
vi= 5t
Then:
(SSt
573 = at + vy

Lo,
stziat + vot + sg
L o
(st — s0) = vot + Eat

Equation 3: No start velocity

This equation is:

1
(8751 - Sto) = Ut (tl - tO) - id(tl — t0)2
To derive this start with:

v = at + vg
V¢ + Vo
2

(st —s0) =t

So:

16
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Vg = vy — at

2
Vo = E(St - 80) — Ut

2
v —at = ;(st—so)—vt

1
(st — 80) = vt — §at2

Equation 4: No time
This equation is:

V7 =7 + 2a(sy, — i)
To derive this start with:

vy = at + vg

V¢ + Vo

(st —sp) =t 5
So:

UV — U
;= t 0

a

t:25t_50

V¢ + Vo

Uy — Vg _23t_50
a v + Vg
(ve — vo)(ve + v9) = 2a(ss — Sp)

v = v3 + 2a(s; — so)

Equation 5: No acceleration

This equation is:
Uty + Vtq

(81, = 815) = (t1 — to) 5

To derive this start with:
vy = at + vg

Lo,
St — 89 = Eat + vot

So:
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vi—vo _ 2[(st — s0) — wot]
t t2
t(ve — o) = 2[(s: — o) — vot]
t(ve +vo) = 2(s¢ — s0)
vt + Vo
2

(st —sp) =t
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Mechanics of varying fields
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Chapter 8

Harmonics

8.1 Introduction

8.1.1 Introduction

Acceleration inversely proportional to distance.

20



Chapter 9

Orbits, Galileo’s laws,
Copernicus’s laws

9.1 Introduction

9.1.1 Deriving Galileo’s laws from Newton

9.1.2 Deriving Copernicus’s laws from Newton
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Chapter 10

Music

10.1 Introduction

10.1.1 Pure tones

Describe a pitch by vibration frequency Hertz Hz, period

octave up is 2x frequency

phenomenon of finding similarity betwenn octaves, so can be named similarly.
Musical interval 2:1 - octave 1:1 - unison

consonance and dissonance phenomena of whether we see pitches as in harmony
or not

how to create notes between? equal temperament: want [n] number, so each
ratio is 21/7

for 12 tone scale, 21/12

harmonic of a tone take tone. integer multiples of the frequencies are the har-
monic sequence. frequencies here are ”rational” frequences of equal tempera-
ment are irrational (between octaves)

pythagorean scale generated by pure 5ths (3:2)(aka perfect fifth) and octaves
(2:1) result is unevenly spaced notes

10.1.2 Chords

major chord: root, major third, perfect fifth minor chord: root, minor third,
perfect fifth

Ohm’s acoustic law: we can hear individual notes when put together
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Part 1V

2 body gravity
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Part V

3 body gravity
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Part VI

Dynamical systems:
Attractors and strange
attractors
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Part VII

Geometrical optics
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Part VIII

Observations
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Part IX

Physical models
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Chapter 11

Paths

11.1 Describing paths

11.1.1 Describing events
In vector space R™.

qeR”

11.1.2 Describing the path of a particle
Also known as a worldline.

Index to ¢t
q(t)

11.1.3 Describing the velocity of a particle

,_ 5
Y

11.1.4 Describing the acceleration of a particle
_a

Y

_%%q

o ot2

a

a

29
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11.2 Action

11.2.1 Action

We observe a particle moving in a path. We want to model the path that the
particle takes.

The path is in a vector space, with coordinates q. These coordinates could refer
to the x, y, z and t coordinates we are are familar with.

For the path we have a start point a and end point b. We can define the length
of the path as:

S = f; dr
We call S the action.

11.2.2 Linear metrics
We use a linear metric.
m?=q"Mq

So:

dr? = (dq)"Mdq

S = [*\/(dq)™™Mdq

11.2.3 Time and velocity

S = f \ =5 dt2 (dq)TMdqdt
b [, dd o cd]
= _ Mi
s fa ( dt ) dt dt

S = [P\ /(@TMddt

11.3 The Lagrangian

11.3.1 Lagrangians
We have:

§ = J;' V(&) ™Madt

We can define:
L=\/(a)™M¢

So we have:
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b
S = [ Ldt

11.3.2 Principle of stationary action
0A=0

That is, the coordinates and their velocities are such that action is stationary.

11.3.3 Euler-Lagrange

We have ¢(t) which makes the action stationary. Consider adding proportion e
of another function f(t) to ¢(t).

A = [ Llg(t) + ef(8),q(t) + ef (D)]dt

A AL Llg) 4 cf(0).alt) + e/ ()] ~ Lig. ot

We can do a Taylor expansion of A’.

€

A= [P Llg(t) + ef (t), qt) + ef (t)]dt

A= [ Llg(t), q(t)] + e[f% + f-fs—s] + 2. )dt

So:

= 6_ 4 % o Lla(t), q(t)] + 6[f% + f-g—;] + €2[...] — Lig, ¢)dt
A — A t SL

5L
— =i [fg +f6—q] +el...]dt

We can now make the left side 0, by using the definition of stationary action.

. A - A t: 0L oL
lime_,q — = [, [f% +f~57q.]dt
ty: 0L oL, .
tr: 0L trpp 0L,
‘o [fg]dwr v Lf 5q']dt*0
Note that
b8l Ol d oL
to [ 5q]dt_ [f 5q]t0 to dt 5q
We assume that f(tg) = f(t1) = 0 and so:
b 0Ly oL

Plugging this back in we get:
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oL d oL

5= £ 57 =0
oL d oL
L[] = ——dt] =
ft(’ f[éq] dt §q I=0
Since this applies to all possible functions we get:
5L _ diL
dq  dt g

11.3.4 Definition: Momentum

L
p_&j

11.3.5 EL v2
L=(@"™4q
5L d L

o ai'eq)

We have

S = [7 L(q(t), q(t))dt

8 =6 [* L(q(t),4(t))dt

J = [} L(t,q(t), 4(t))dt

J=301

11.3.6 EL v3

A =5 L(xz(t),z(t))ot

. ZL<3c(t) +z{t—1) z(t) —z(t— 1))&

2 ’ 5t
I
(sj(t)Aza%L e it Lo

A= [} Liq(®), q()dt
A= L(g(#), ()0t

PO YGRS R G TGRD
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Y A=Y Y L(q(t)—Q(t—l) q(t)—Q(t—l))5t

Sgi(t) 6qi(t) 2 ’ ot

6o 6 q)+q(t—1) g(t) —q(t—1) 6 o q(t+1)+q(t) q(t+1)—q(t)
WA - 6t[5q¢(t) ( 2 ’ 5t )+5qi(t)L( 2 ’ 5t

5 ol 1 1 1 ) gt +1)+q(t) qt+1)—qt)

11.4 The Euclidian metric

11.4.1 The Euclidian metric
For the Euclidian metric:

M=1

(dv)TMdv = (dv)Tdv = da® + dy? + dz?
Action = [ \/dx® + dy* + d22

Action = [ /2 + 42 + 22dt

Action = [ vdt

What are symmetries here? Gallilean group and?

11.4.2 Euclidian rotations
11.4.3 The Euclidan group
11.4.4 The Galilean group

11.5 Examples from Euler-Lagrange

11.5.1 Outcome

SL_ d5L
dq  dt g
L=+/(a4"™™Mq

If M =1, then:
L=+/(4)"q

In 1 dimension, Euclid:
L=V§ L=

So:

oL 6 . 6L

dg gl 5g "

)]



CHAPTER 11. PATHS

oL 0 . 0L
i
Into Euler-Lagrange:
oL ddoL  d
0q  dt 0q dt

In three dimensions:

1

i? + g2 + 22
So:

L L
67 — i /j:? + y2 + 2':2 67
dq dq

q
oL

)
. S % BN R)
5 5 e +y-+z

11.6 Other

11.6.1 Momentum

We define the momentum as:

oL

)
i = — /(@) TMé
1z 54, (@T™Mg

11.6.2 Force

34



Chapter 12

Symmetry

12.1 Introduction

12.1.1 Symmetry

We have a system of particles or something. we can do a measure on it.
We can do functions on the system.

What is preserved is an invariant measure

We observe event, worldline. other observers can:

12.1.2 Rotations
12.1.3 Translations
12.1.4 Boosts

Part here on adding velocities. show classical limit of normal adding them.
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Chapter 13

Fields

13.1 Introduction

13.1.1 Fields
13.1.2 Action on a field
13.1.3 The Euler-Lagrange equations for fields
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Part X

Electromagnetism
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Chapter 14

Electromagnetism, waves,
action on a field, least
action on a field and gauge
theory

14.1 Introduction

14.1.1 Introduction
ﬁzeﬁ?:eﬁx_ﬁ?:eﬁ—i—ﬁxﬁ

_>
divB =0 divﬁ =

14.1.2 Electric fields
14.1.3 Magnetic fields
14.1.4 Electric potential
14.1.5 Magnetic potential

14.1.6 Column’s law

a1
F—p 12
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Part XI

Lagrangian formations
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Part XII

Hamiltonian formations
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Chapter 15

Hamiltonian

15.1 Introduction

15.1.1 Legendre transformation

41



