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Preface

This is a live document, and is full of gaps, mistakes, typos etc.
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Part I

Univariate stochastic
processes
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Chapter 1

Stochastic processes and
their moments

1.1 Introduction to processes

1.1.1 Stochastic processes

In a stochastic process we have a mapping from a variable (time) to a random
variable.

Discrete and continuous time

Time could be discrete, or continuous.

Temperature over time is a stochastic process, as is the number of cars sold each
day.

Discrete and continous state space

The state space for temperature is continous, the number of people on the moon
is discrete.

1.1.2 Stochastic evolution

We can describe processes by their evolution.

p(xt|xt−1...)
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1.1.3 Gaussian processes

1.1.4 Moments of stochastic processes

1.1.5 Autocovariance and autocorrelation

Autocovariance

AC(a, b) = cov(Xa, Xb)

Autocorrelation

The autocorrelation between two time periods is their covariance, normlised by
their variances

AC(a, b) =
E[(Xa − µa)(Xb − µb)]

σaσb

This is also called serial correlation.



Chapter 2

White noise, and weak- and
wide-sense stationarity

2.1 Stationarity

2.1.1 Weak- and wide-sense stationarity

Unconditional probabilities don’t change over time.

So GDP would not be stationary, but random noise would. A random walk is
not stationary, because the variance increases over time.

2.1.2 Weak-sense stationary

Mean and autocovarinance don’t change over time.

2.1.3 Wide-sense stationary

All moments are the same.

2.1.4 Unit roots

2.2 Introduction

2.2.1 White noise

Variables at each time are indepdendent.
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Chapter 3

Random walks

3.1 Random walks

3.1.1 Random walks
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Chapter 4

Martingale processes

4.1 Introduction

4.1.1 Martingale property

For a process with the Martingale property, the expected value of all future
variables is the current state.

This only restricts expectations.

E(Xn+1|X0, ..., Xn) = Xn
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Chapter 5

Markov processes

5.1 Introduction

5.1.1 Markov property

For a process with the Markov property, only the current state matters for all
probability distributions.

P (xt+n|xt) = P (xt+n|xt, xt−1...)

5.2 Markov chains

5.2.1 Finite state Markov chains

Transition matrices

This shows the probability for moving between discrete states.

We can show the probability of being in a state by multiplying the vector state
by the transition matrix.

Mv

Time-homogenous Markov chains

For time-homogenous Markov chains the transition matrix is independent of
time.

For these we can calculate the probability of being in any given state in the
future:

Mnv
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CHAPTER 5. MARKOV PROCESSES 11

This becomes independent of v as we tend to infinity. The initial starting state
does not matter for long term probabilities.

How to find steady state probability?

Mv = v

The eigenvectors! With associated eigenvector 1. There is only one eigenvector.
We can find it by iteratively multiplying any vector by M .

5.2.2 Infinite state Markov chains

Markov model description We can represent the transition matrix as a series of
rules to reduce the number of dimensions P (xt|yt−1) = f(x, y)

can represent states as number, rather than atomic. could be continuous, or
even real.

in more complex, can use vectors.

5.3 Hidden Markov Models

5.3.1 Introduction

As well as the Markov process X, we have another process Y which depends on
X.

5.4 Dynamic Bayesian networks

5.4.1 Introduction



Chapter 6

Survival functions

6.1 Introduction

6.1.1 Survival functions
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Part II

Univariate Continuous-time
stochastic processes
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Chapter 7

Wiener processes and
Brownian motion

7.1 Wiener proceses

7.1.1 Independent increments

The changes in any non-overlapping time increments are independent.

Formally:

t0 < t1 < t2 < ... < tm

With Xt

Xt1 −Xt0 is indepentent from Xt2 −Xt1 etc.

7.1.2 Wiener processes

A Wiener process is a process Wt with independent increments, which: + Is
continuous + Has normally distributed increments.

Can be constructed as limit of random walk. Can also be constructed as integral
of Gaussian noise?

7.2 Brownian motion

7.2.1 Brownian motion

brownian motion in stats. given we start at a, what is chance be end up at b?
normal. do 1d then multi d
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Chapter 8

Stochastic differential
equations
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Part III

Univariate discrete-time
stochastic processes
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Chapter 9

Orders of integration

9.1 Introduction

9.1.1 Orders of integration

How many diffs do you need to do to get a stationary process?

If something is first order integrated it is I(1).

9.1.2 Trend stationary

If we can remove the trend as a function, eg linear or non-linear growth, and
the rest is stationary, then the process is trend stationary

9.1.3 Seasonal and non-seasonal trends

We can model the process as:

yt = µt + f(t) + ϵt

9.1.4 Cyclical fluctuations

We can have shocks having effects over time.

This is separate to trends.
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Chapter 10

Auto-Regressive processes,
Moving-Average processes
and Wold’s theorem

10.1 Autoregressive model

10.1.1 Autoregressive models (AR)

AR(1)

Our basic model was:

xt = α+ ϵt

We add an autoregressive component by adding a lagged observation.

xt = α+ βxt−1 + ϵt

AR(p)

AR(p) has p previous dependent variables.

xt = α+
∑p

i=1 βixt−i

Propagation of shocks

A shock bumps up the output variable, which bumps up output variables forever,
at a decreasing rate.
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10.1.2 Testing for stationarity with Dickey-Fuller (DF)
and Augmented Dicky-Fuller (ADF)

Stationarity

Unit roots

Integration order

Dickey-Fuller

The Dickey-Fuller test tests if there is a unit root.

The AR(1) model is:

yt = α+ βyt−1 + ϵt

We can rewrite this as:

∆yt = α+ (β − 1)yt−1 + ϵt

We test if β − 1) = 0.

If the coefficient on the last term is 1 we have a random walk, and the process
is non-stationary.

If the last term is < 1 then we have a stationary process.

Variation: Removing the drift

If our model has no intercept it is:

yt = βyt−1 + ϵt

∆yt = (β − 1)yt−1 + ϵt

Variation: Adding a deterministic trend

If our model has a time trend it is:

yt = αβyt−1 + γt+ ϵt

∆yt = α+ (β − 1)yt−1 + γt+ ϵt

Augmented Dickey-Fuller

We include more lagged variables.

yt = α+ βt+
∑p

i θiyt−i + ϵt

If no unit root, can do normal OLS?
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10.1.3 Autoregressive Conditional Heteroskedasticity (ARCH)

Variance of the AR(1) model

The standard AR(1) model is:

yt = α+ βyt−1 + ϵt

The variance is:

V ar(yt) = V ar(α+ βyt−1 + ϵt)

V ar(yt)(1− β2) = V ar(ϵt)

Assuming the errors are IID we have:

V ar(yt)) =
σ2

1− β2

This is independent of historic observations, which may not be desirable.

Conditional variance

Consider the alternative formulation:

yt = ϵtf(yt−1)

This allows for conditional heteroskedasticity.

10.2 Moving average models

10.2.1 Moving Average models (MA)

We add previous error terms as input variables

MA(q) has q previous error terms in the model

Unlike AR models, the effects of any shocks wear off after q terms.

This is harder to fit the OLS, the error terms themselves are not observed.

10.3 Autoregressive Moving Average models

10.3.1 Autoregressive Moving Average models (ARMA)

We include both AR and MA

Estimted using Box-Jenkins
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10.3.2 Autoregressive Integrated Moving Average models
(ARIMA)

Uses differences to remove non statiority

Also estiamted with box-jenkins

10.3.3 Seasonal ARIMA

10.4 Wold’s theorem

10.4.1 Introduction



Part IV

Sampling
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Chapter 11

Markov chain Monte Carlo
sampling

11.1 Markov Chain Monte Carlo (MCMC) meth-
ods

11.2 Metropolis-Hastings algorithm

11.2.1 The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm

The Metropolis-Hastings algorithm creates a set of samples x such that the
distribution of the samples approaches the goal distribution.

Initialisation

The algorithm takes an arbitrary starting sample x0. It then must decide which
sample to consider next.

Generation

It does this using a Markov chain. That is, there is a map g(xj , xi).

This distribution is generally a normal distribution around xi, making the pro-
cess a random walk.

Acceptance

Now we have a considered sample, we can either accept or reject it. It is this
step that makes the end distribution approximage the function.
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We accept if
f(xj)

f(xi)
> u, where u is a random variable between 0 and 1, generated

each time.

We can calculate this because we know this function.

Properties

11.3 Gibb’s sampling

11.3.1 Gibb’s sampling

Introduction

As with Metropolis-Hastings, we want to generate samples for P (X) and use
this to approximate its form.

We do this by using the conditional distribution. If X is a vector then we also
have:

P (xj |x0, ..., xj−1, xj+1, ..., xn)

We use our knowledge of this distribution.

Start with vector x0.

This has components x0,j

To form the next vector x1 we loop through each component.

P (x1,0|x0,0, x0,1, ..., x0,n)

We use this to form x1,0

However after th the first component we update this so it uses the updated
variables.

P (x1,k|x1,0, ..., x1,k−1, x0,k, ..., x0,n

This means we only need to know the conditional distributions.



Chapter 12

Sampling from processes

12.1 Introduction
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Chapter 13

Forecasting stochastic
processes

13.1 Forecasting

13.1.1 Introduction to forecasting

We observe a series of observations:

x1, x2, ..., xt)

What can we say about xt+1?

If the data was drawn iid then the past data then we would just want to identify
moments.

However if the data is not iid, for example because it is increasing in time, then
this is not the best way.

Regression formation

We can model

xt = α+ ϵt

13.1.2 Monte carlo simulations

13.1.3 N-step ahead

13.1.4 Consensus forecasting
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Part V

Signal processing
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Chapter 14

Quantisation and sample
rates

14.1 Introduction

14.1.1 Quantisation

14.1.2 Sample rate
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Chapter 15

Discrete Fourier Transform

15.1 Introduction

15.1.1 Discrete Fourier Transform
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Chapter 16

Down sampling

16.1 Introduction

16.1.1 Down sampling
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Chapter 17

Fast Fourier Transform

17.1 Introduction

17.1.1 Fast Fourier Transform
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Chapter 18

Noisy networks

18.1 Introduction

18.1.1 Noisy networks
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Part VI

Advanced inference (time
series univariate)
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Chapter 19

Imputing missing data for
time series

19.1 Time series

19.1.1 ARIMA interpolation

19.1.2 Last Observation Carried Forward (LOCF)

19.1.3 Next Observation Carried Backward (NOCB)

19.1.4 Other

Multi period averages for imputation on time series.
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Part VII

Estimating time series
models
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Chapter 20

Estimating Markov chains

20.1 Estimating Markov chains

20.1.1 Estimating the Markov chain stochastic matrix

Introduction

Given a sequence: x1, ...xn.

The likelihood is:

L =
∏n

i=2 pxi−1,xi

If there are k states we can rewrite this as:

L = prodki=1

∏k
j=1 nijpij

Where pij is the chance of moving from state i to state j, and nij is the number
of transtions between i and j.

The log likelhood is:

lnL =
∑k

i=1

∑k
j=1 nij ln pij

Constrained optimisation

Not all parameters are free. All probabilities must sum to 1.

lnL =
∑k

i=1

∑k
j=1 nij ln pij − sumi=1λi(

∑
j=1 pij − 1)

This gives us:

p̂ij =
nij∑
k nik

36
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20.1.2 Estimating infinite state Markov chains

We can represent the transition matrix as a series of rules to reduce the number
of dimensions

P (xt|yt−1) = f(x, y)

can represent states as number, rather than atomic. could be continuous, or
even real.

in more complex, can use vectors.

20.2 Ergodic processes

20.2.1 Ergodic processes

Sample moments must converge to generating momements. Not guaranteed.

Eg process with path dependence. 50

Generating average is £50, but sample will only convergen to £100 or £0



Chapter 21

Estimating Hidden Markov
Models (HMMs)

21.1 Estimating Hidden Markov Models (HMMs)

21.1.1 Recap of Hidden Markov Models (HMMs)

We don’t see state

Each state produces a visible output. this output is drawn from a distribution
for each state.

We observe a sequence of outputs, not states.

21.1.2 Estimating HMMs with the Viterbi algorithm

Assume we know transition matrix. and starting probls

Given we observe sequence of outputs, what were most likely actual paths?

Virbiti returns this

21.1.3 Estimating HMMs with the forward algorithm

Given we have observed outputs, what is the chance of being in a certain state
at a certain time?

21.1.4 Estimating HMMs with the forward-backward al-
gorithm

We calculate state x at time t given all obs.
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21.1.5 Baum-Welch algorithm

21.1.6 Kalman filters



Chapter 22

Univariate forecasting

22.1 Introduction

22.1.1 Seasonal and non-seasonal trends

We can model the process as:

yt = µt + f(t) + ϵt

22.1.2 Identifying the order of integration using Augmented
Dickey-Fuller

The Dickey-Fuller test with deterministic time trend was:

∆yt = α+ βt+ γyt−1 + ϵt

The Augmented Dickey-Fuller model adds lags for the differences.

∆yt = α+ βt+ γyt−1 +
∑p

i δi∆yt−i + ϵt

22.1.3 Cyclical fluctuations

We can have shocks having effects over time.

This is separate to trends.

22.1.4 Identifying serial correlation using the Durbin-Watson
statistic

22.1.5 Introduction to forecasting

We observe a series of observations:

x1, x2, ..., xt)

40



CHAPTER 22. UNIVARIATE FORECASTING 41

What can we say about xt+1?

If the data was drawn iid then the past data then we would just want to identify
moments.

However if the data is not iid, for example because it is increasing in time, then
this is not the best way.

Regression formation

We can model

xt = α+ ϵt

22.2 Autoregressive model

22.2.1 Autoregressive models (AR)

AR(1)

Our basic model was:

xt = α+ ϵt

We add an autoregressive component by adding a lagged observation.

xt = α+ βxt−1 + ϵt

AR(p)

AR(p) has p previous dependent variables.

xt = α+
∑p

i=1 βixt−i

Propagation of shocks

A shock bumps up the output variable, which bumps up output variables forever,
at a decreasing rate.

22.2.2 Testing for stationarity with Dickey-Fuller (DF)
and Augmented Dicky-Fuller (ADF)

Stationarity

Unit roots

Integration order

Dickey-Fuller

The Dickey-Fuller test tests if there is a unit root.

The AR(1) model is:
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yt = α+ βyt−1 + ϵt

We can rewrite this as:

∆yt = α+ (β − 1)yt−1 + ϵt

We test if β − 1) = 0.

If the coefficient on the last term is 1 we have a random walk, and the process
is non-stationary.

If the last term is < 1 then we have a stationary process.

Variation: Removing the drift

If our model has no intercept it is:

yt = βyt−1 + ϵt

∆yt = (β − 1)yt−1 + ϵt

Variation: Adding a deterministic trend

If our model has a time trend it is:

yt = αβyt−1 + γt+ ϵt

∆yt = α+ (β − 1)yt−1 + γt+ ϵt

Augmented Dickey-Fuller

We include more lagged variables.

yt = α+ βt+
∑p

i θiyt−i + ϵt

If no unit root, can do normal OLS?

22.2.3 Autoregressive Conditional Heteroskedasticity (ARCH)

Variance of the AR(1) model

The standard AR(1) model is:

yt = α+ βyt−1 + ϵt

The variance is:

V ar(yt) = V ar(α+ βyt−1 + ϵt)

V ar(yt)(1− β2) = V ar(ϵt)

Assuming the errors are IID we have:

V ar(yt)) =
σ2

1− β2
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This is independent of historic observations, which may not be desirable.

Conditional variance

Consider the alternative formulation:

yt = ϵtf(yt−1)

This allows for conditional heteroskedasticity.

22.3 Moving average models

22.3.1 Moving Average models (MA)

We add previous error terms as input variables

MA(q) has q previous error terms in the model

Unlike AR models, the effects of any shocks wear off after q terms.

This is harder to fit the OLS, the error terms themselves are not observed.

22.4 Autoregressive Moving Average models

22.4.1 Autoregressive Moving Average models (ARMA)

We include both AR and MA

Estimted using Box-Jenkins

22.4.2 Autoregressive Integrated Moving Average models
(ARIMA)

Uses differences to remove non statiority

Also estiamted with box-jenkins
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22.4.3 Seasonal ARIMA

22.5 Forecasting

22.5.1 Monte carlo simulations

22.5.2 N-step ahead

22.5.3 Consensus forecasting

22.6 Other

22.6.1 Identifying the order of integration using Augmented
Dickey-Fuller

The Dickey-Fuller test with deterministic time trend was:

∆yt = α+ βt+ γyt−1 + ϵt

The Augmented Dickey-Fuller model adds lags for the differences.

∆yt = α+ βt+ γyt−1 +
∑p

i δi∆yt−i + ϵt

22.6.2 Identifying serial correlation using the Durbin-Watson
statistic



Chapter 23

Inference with time series

23.1 OLS on time series data

23.1.1 Bias of static models and spurious correlations

Static models

Static models are of the form:

yt = α+ βxt + ϵt

These have no lagged variables or difference operators.

Bias of static models

23.1.2 Heteroskedasticity and Autocorrelation (HAC) ad-
justed standard errors

23.2 Time series

23.2.1 Taking differences

What we use should depend on I(1), I(0) etc from ADF

if we’re missing time invariant data, we can do first differences and this isn’t a
problem if we do diff in diff this removes trends?

page on first difference estiamtion? OLS on first differences. No other lags page
on first difference ESTIMATOR

23.2.2 Discontinuity

Create a dummy for before/after a date.

45



CHAPTER 23. INFERENCE WITH TIME SERIES 46

23.3 Panel data

23.3.1 Difference-in-difference

Consider the grouped linear model:

yij = µ+ τi +Xjθ + ϵij

By taking differences with another observation in the same group we remove
the average terms.

yij − yik = (µ+ τi +Xjθ + ϵij)− (µ+ τi +Xkθ + ϵik)

yij − yik = (Xjθ −Xk) + (ϵij − ϵik)

diff in diff: control group and treated group. page on leakiness? are control
affected too? Assumption: in absense of treatment, price would have evolved
like control

23.3.2 Controlled experiments

23.3.3 Natural experiments

23.3.4 Structural breaks

Testing for structural breaks with the Chow test.

23.3.5 Dynamic or lagged independent variables

Static panel data: No lags of independent variables. Dynamic panel data: Lags
of independent variables.

OLS is consistent for static panel data, not for dynamic This results in Nickell’s
bias for dynamic panel data

Dynamic panel data: yt−1 is a regressor Panel data estimation: LSDV. Least
squares dummy variable estimator arnello bond



Chapter 24

Survival analysis

24.1 Introduction

24.1.1 Cox-hazard
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