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Chapter 1

Events, the probability
function and the
Kolgomorov axioms

1.1 Events

1.1.1 Elementary events

We have a sample space, Ω consisting of elementary events.

All elementary events are disjoint sets.

1.1.2 Non-elementary events

We have a σ-algebra over Ω called F . A σ-algebra takes a set a provides another
set containing subsets closed under complement. The power set is an example.

All events E are subsets of Ω

∀E ∈ FE ⊆ Ω

1.1.3 Mutually exclusive events

Events are mutually exclusive if they are disjoint sets.

1.1.4 Complements

For each event E, there is a complementary event EC such that:

E ∨ EC = Ω
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E ∧ EC = ∅

This exists by construction in the measure space.

1.1.5 Union and intersection

As events are sets, we can define algebra on sets. For example for two events
Ei and Ej we can define:

• Ei ∧ Ej
• Ei ∨ Ej

1.2 Kolmogorov axioms

1.2.1 The probability function

For all events E in F , the probability function P is defined.

1.2.2 Measure space

This gives us the following measure space:

(Ω, F, P )

1.2.3 First Kolmogorov axiom

First axiom

The probability of all events is a non-negative real number.

∀E ∈ F [(P (E) ≥ 0) ∧ (P (E) ∈ R)]

1.2.4 Second Kolmogorov axiom

The probability of one of the elementary events occuring is 1.

The probability of the outcome set is 1.

P (Ω) = 1

1.2.5 Third Kolmogorov axiom

The probability of union for mutually exclusive events is:

P (∪∞i=1Ei) =
∑∞
i=1 P (Ei)
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1.3 Basic results

1.3.1 Probability of null

P (Ω) = 1

P (Ω ∨∅) = 1

P (Ω) + P (∅) = 1

P (∅) = 0

1.3.2 Monotonicity

Consider Ei ⊆ Ej :

Ej = Ei ∨ Ek
P (Ej) = P (Ei ∨ Ek)

Disjoint so:

P (Ej) = P (Ei) + P (Ek)

We know that P (Ek) ≥ 0 from axiom 1 so:

P (Ej) ≥ P (Ei)

1.3.3 Bounds of probabilities

As all events are subsets of the sample space:

P (Ω) ≥ P (E)

1 ≥ P (E)

From axiom 1 then know:

∀E ∈ F [0 ≤ P (E) ≤ 1]

1.3.4 Union and intersection for null and universal

P (E ∧∅) = P (∅) = 0

P (E ∨ Ω) = P (Ω) = 1

P (E ∨∅) = P (E)

P (E ∧ Ω) = P (E)
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1.3.5 Separation rule

Firstly:

P (Ei) = P (Ei ∧ Ω)

P (Ei) = P (Ei ∧ (Ej ∨ ECj ))

P (Ei) = P ((Ei ∧ Ej) ∨ (Ei ∧ ECj ))

As the latter are disjoint:

P (Ei) = P ((Ei ∧ Ej) + (Ei ∧ ECj ))

1.3.6 Addition rule

We know that:

P (Ei ∨ Ej) = P ((Ei ∨ Ej) ∧ (Ej ∨ ECj ))

By the distributive law of sets:

P (Ei ∨ Ej) = P ((Ei ∧ ECj ) ∨ Ej)

P (Ei ∨ Ej) = P ((Ei ∧ ECj ) ∨ (Ej ∧ (Ei ∨ ECi ))

By the distributive law of sets:

P (Ei ∨ Ej) = P ((Ei ∧ ECj ) ∨ (Ej ∧ Ei) ∨ (Ej ∧ ECi ))

As these are disjoint:

P (Ei ∨ Ej) = P (Ei ∧ ECj ) + P (Ej ∧ Ei) + P (Ej ∧ ECi )

From the separation rule:

P (Ei ∨ Ej) = P (Ei)− P (Ei ∧ Ej) + P (Ej ∧ Ei) + P (Ej)− P (Ej ∧ Ei)

P (Ei ∨ Ej) = P (Ei) + P (Ej)− P (Ei ∧ Ej)

1.3.7 Probability of complements

From the addition rule:

P (Ei ∨ Ej) = P (Ei) + P (Ej)− P (Ei ∧ Ej)

Consider E and EC :

P (E ∨ EC) = P (E) + P (EC)− P (E ∧ EC)

We know that E and EC are disjoint, that is:

E ∧ EC = ∅

Similarly by construction:

E ∨ EC = Ω
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So:

P (Ω) = P (E) + P (EC)− P (∅)

1 = P (E) + P (EC)

1.4 Other

1.4.1 Odds

Given a set of outcomes for a variable, the odds of the outcome are defined as:

of =
P (E)

P (EC)

For example, the odds of rolling a 6 are
1

5
.

1.4.2 Discrete and continous probability

We know that:∑
y P (X ∧ Y ) = P (X)

So for the continuous case

P (X) =
∫∞
−∞ P (X ∧ Y )dy

This behaves like the probability for a single event, or multiple events with one
fewer event if there were more than 2 events to start with.

1.4.3 Marginalisation



Chapter 2

Conditional probability and
Bayes’ theorem

2.1 Introduction

2.1.1 Conditional probability

We define conditional probability

P (Ei|Ej) :=
P (Ei ∧ Ej)
P (Ej)

We can show this is between 0 and 1.

P (Ej) = P (Ei ∧ Ej) + P (Ēi ∧ Ej)

P (Ei|Ej) :=
P (Ei ∧ Ej)

P (Ei ∧ Ej) + P (Ēi ∧ Ej)
We know:

P (Ei|Ej) :=
P (Ei ∧ Ej)
P (Ej)

P (Ej |Ei) :=
P (Ei ∧ Ej)
P (Ei)

So:

P (Ei|Ej)P (Ej) = P (Ej |Ei)P (Ei)

P (Ei|Ej) =
P (Ej |Ei)P (Ei)

P (Ej)

Note that this is undefined when P (Ej) = 0

10
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Note that for the same event,

P (Ei|Ej) =
P (Ei ∧ Ej)
P (Ej)

P (Ei|Ej) = 0

For the same outcome:

P (Ei|Ei) =
P (Ei ∧ Ei)
P (Ei)

P (Ei|Ei) =
P (Ei)

P (Ei)

P (Ei|Ei) = 1

2.1.2 Bayes’ theorem

From the definition of conditional probability we know that:

P (Ei|Ej) :=
P (Ei ∧ Ej)
P (Ej)

P (Ej |Ei) :=
P (Ei ∧ Ej)
P (Ei)

So:

P (Ei ∧ Ej) = P (Ei|Ej)P (Ej)

P (Ei ∧ Ej) = P (Ej |Ei)P (Ei)

So:

P (Ei|Ej)P (Ej) = P (Ej |Ei)P (Ei)

2.1.3 Independent events

Events are independent if:

P (Ei|Ej) = P (Ei)

Note that:

P (Ei ∧ Ej) = P (Ei|Ej)P (Ej)

And so for independent events:

P (Ei ∧ Ej) = P (Ei)P (Ej)



Chapter 3

Entropy

3.1 Entropy

3.1.1 Information

Criteria

Self information measures surprise of outcome. also called a surprisal.

When we observe an outcome we get information. We can develop a measure
for how much information is associated with a specific measurement.

Rule 1: Information is always positive

Rule 2: If P (x) = 1, the the information for I(P (x)) = 0.

Rule 3: If two events are independent, then their information is additive.

• P (C) = P (A)P (B)

• I(P (C)) = I(P (A)P (B))

• I(P (A)) + I(P (B)) = I(P (A)P (B))

Choice of function

A function which satisifes this is I(P (A)) = − log(P (A))

Any base can be used. 2 is most common, information is in units of bit then.

3.1.2 Entropy

Introduction

Entropy measures the expected amount of information produced by a source.

12
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H(P (x)) = E(I(P (x))

Entropy is similar to variance, is the sense that both measure uncertainty.

Entropy, however, has no references to specific values of x. If all values were
multiplied by 100, or if parts of the distribution were cut up and swapped,
entropy would be unaffected.

For a probability function p(z), its entropy is :

H(p) = −
∫
p(z) ln p(z)dz.

This is a measure of the spread of a distribution.

Negative infinity means no uncertainty

For a multivariate gaussian H = d/2ln(2πe|Σ).



Part II

Variables
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Chapter 4

Variables

4.1 Variables

4.1.1 Random variables

Defining variables

We have a sample space, Ω. A random variable X is a mapping from the sample
space to the real numbers:

X : Ω→ R

We can then define the set of elements in Ω. As an example, take a coin toss
and a die roll. The sample space is:

{H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6}

A random variable could give us just the die value, such that:

X(H1) = X(T1) = 1

We can define this more precisely using set-builder notation, by saying the
following is defined for all c ∈ R:

{ω|X(ω) ≤ c}

That is, for any number random variable map X, there is a corresponding subset
of Ω containing the ωs in Ω which map to less than c.

Multiple variables

Multiple variables can be defined on the sample space. If we rolled a die we
could define variables for

• Whether it was odd/even

15
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• Number on the die

• Whether it was less than 3

With more die we could add even more variables

Derivative variables

If we define a variable X, we can also define another variable Y = X2.

4.1.2 Probability mass functions

P (X = x) = P (ω|X(ω) = x)

For discrete probability, this is a helpful number. For example for rolling a die.

This is not helpful for continuous probability, where the chance of any specific
outcome is 0.

4.1.3 Cumulative distribution functions

Definition

Random variables all valued as real numbers, and so we can write:

P (X ≤ x) = P (ω|X(ω) ≤ x)

Or:

FX(x) =
∫ x
−∞ fX(u)du

FX(x) =
∑
xi≤x P (X = xi)

Partitions

P (X ≤ x) + P (X ≥ x)− P (X = x) = 1

Interval

P (a < X ≤ b) = FX(b)− FX(a)

4.1.4 Probability density functions

Definition

If continuous, probability at any point is 0. We instead look at probability
density.

Derived from cumulative distribution function:

FX(x) =
∫ x
−∞ fX(u)du

The density function is fX(x).
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Conditional probability distributions

For probability mass functions:

P (Y = y|X = x) =
P (Y = y ∧X = x)

P (X = x)

For probability density functions:

fY (y|X = x) =
fX,Y (x, y)

fX(x)

4.2 Multiple variables

4.2.1 Joint and marginal probability

Joint probability

P (X = x ∧ Y = y)

Marginal probability

P (X = x) =
∑
y P (X = x ∧ Y = y)

P (X = x) =
∑
y P (X = x|Y = y)P (Y = y)

4.2.2 Independence and conditional independence

Independence

x is independent of y if:

∀xi ∈ x, ∀yj ∈ y(P (xi|yj) = P (xi)

If P (xi|yj) = P (xi) then:

P (xi ∧ yj) = P (xi).P (yj)

This logic extends beyond just two events. If the events are independent then:

P (xi ∧ yj ∧ zj) = P (xi).P (yj ∧ zk) = P (xi).P (yj).P (zk)

Note that because:

P (xi|yj) =
P (xi ∧ yj)
P (yj)

If two variables are independent

P (xi|yj) =
P (xi)P (yj)

P (yj)

P (xi|yj) = P (xi)
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Conditional independence

P (A ∧B|X) = P (A|X)P (B|X)

This is the same as:

P (A|B ∧X) = P (A|X)



Chapter 5

Expected value, conditional
expectation and Jensen’s
inequality

5.1 Moments

5.1.1 Functionals of probabilities

φ(P ) ∈ R is a functional on P (X).

Examples include the expectation and variance.

We can define derivatives on these functionals.

φ(P ) ≈ φ(P 0) +Dφ(P − P 0)

Where Dφ is linear.

5.1.2 Expected value

Definition

For a random variable (or vector of random variables), x, we define the expected
value of f(x) as :

E[f(x)] :=
∑
f(xi)P (xi)

The expected value of random variable x is therefore this where f(x) = x.

E(x) =
∑
i xiP (xi)

19
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Linearity of expectation

We can show that E(x+ y) = E(x) + E(y):

E[x+ y] =
∑
i

∑
j(xi + yj)P (xi ∧ yj)

E[x+ y] =
∑
i

∑
j xi[P (xi ∧ yj)] +

∑
i

∑
j [yjP (xi ∧ yj)]

E[x+ y] =
∑
i xi
∑
j [P (xi ∧ yj)] +

∑
j yj

∑
i[P (xi ∧ yj)]

E[x+ y] =
∑
i xiP (xi) +

∑
j yjP (yj)

E[x+ y] = E[x] + E[y]

Expectations of multiples

Expectations

E(cx) =
∑
i cxP (xi)

E(cx) = c
∑
i xP (xi)

E(cx) = cE(x)

Expectations of constants

E(c) =
∑
i ciP (ci)

E(c) = cP (c)

E(c) = c

Conditional expectation

If Y is a variable we are interested in understanding, and X is a vector of other
variables, we can create a model for Y given X.

This is the conditional expectation.

E[Y |X]

E[P (Y |X)Y ]

In the continuous case this is

E(Y |X) =
∫∞
−∞ yP (y|X)dy

We can then identify an error vector.

ε := Y − E(Y |X)

So:

Y = E(Y |X) + ε

Here Y is called the dependent variable, and X is called the dependent variable.
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Iterated expectation

E[E[Y ]] = E[Y ]

E[E[Y |X] = E[Y ]

5.1.3 Jensen’s inequality

If φ is convex then:

φ(E[X]) ≥ E[φ(X)])



Chapter 6

Variance and covariance

6.1 Introduction

6.1.1 Variance

Definition

The variance of a random variable is given by:

V ar(x) = E((x− E(x))2)

V ar(x) = E(x2 + E(x)2 − 2xE(x))

V ar(x) = E(x2) + E(E(x)2)− E(2xE(x))

V ar(x) = E(x2) + E(x)2 − 2E(x)2

V ar(x) = E(x2)− E(x)2

Variance of a constant

V ar(c) = E(c2)− E(c)2

V ar(c) = c2 − c2

V ar(c) = 0

Variance of multiple

V ar(cx) = E((cx)2)− E(cx)2

V ar(cx) = E(c2x2)− [
∑
i cxP (xi)]

2

V ar(cx) = c2E(x2)− c2[
∑
i xP (xi)]

2

V ar(cx) = c2[E(x2)− E(x)2]

22
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V ar(cx) = c2V ar(x)

Link between variance of expectation

E(x)2 + V ar(x) = E(x)2 + E((x− E(x))2)

E(x)2 + V ar(x) = E(x)2 + E(x2 + E(x)2 − 2xE(x))

E(x)2 + V ar(x) = E(x)2 + E(x2) + E(E(x)2)− E(2xE(x))

E(x)2 + V ar(x) = E(x)2 + E(x2) + E(x)2 − 2E(x)E(x))

E(x)2 + V ar(x) = E(x2)

Covariance

V ar(x+ y) = E((x+ y)2)− E(x+ y)2

V ar(x+ y) = E(x2 + y2 + 2xy)− E(x+ y)2

V ar(x+ y) = E(x2) + E(y2) + E(2xy)− E(x+ y)2

V ar(x+ y) = E(x2) + E(y2) + E(2xy)− [E(x) + E(y)]2

V ar(x+ y) = E(x2) + E(y2) + E(2xy)− E(x)2 − E(y)2 − 2E(x)E(y)]

V ar(x+ y) = [E(x2)− E(x)2] + [E(y2)− E(y)2] + E(2xy)− 2E(x)E(y)

V ar(x+ y) = V ar(x) + V ar(y) + 2[E(xy)− E(x)E(y)]

We then define:

Cov(x, y) := E(xy)− E(x)E(y)

Noting that:

Cov(x, x) = E(xx)− E(x)E(x)

Cov(x, x) = V ar(x)

So:

V ar(x+ y) = V ar(x) + V ar(y) + 2Cov(x, y)

V ar(x+ y) = Cov(x, x) + Cov(x, y) + Cov(y, x) + Cov(y, y)

Cov(x, c) = E(xc)− E(x)E(c)

Cov(x, c) = cE(x)− cE(x)

Cov(x, c) = 0
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6.1.2 Covariance matrix

With multiple events, covariance can be defined between each pair of events,
including the event with itself.

The covariance between 2 variables is:

Cov(xi, xj) := E(xixj)− E(xi)E(xj)

Which is equal to:

Cov(xi, xj) = E[xi − E(xi)][xj − E(xj)]

We can therefore generate a covariance matrix through:∑
= E[(X − E[X])(X − E[X])T ]



Chapter 7

Higher moments

7.1 Introduction

7.1.1 Moments

Moments

The nth moment of variable X is defined as:

E[Xn] =
∑
i x

n
i P (xi)

The mean is the first moment.

Central moments

The nth central moment of variable X is defined as:

µn = E[(X − E[X])n] =
∑
i(xi − E[X])nP (xi)

The variance is the second central moment.

Standardised moments

The nth standardised moment of variable X is defined as:

E[(X − E[X])n]

(E[(X − E[X])2]
n
2

=
µn
σn

Kertosis

Kertosis is the third standardised moment.

Skew

Skew is the fourth standardised moment.

25



Chapter 8

Markov’s inequality and
Chebyshev’s inequality

8.1 Other

8.1.1 Markov’s inequality and Chebyshev’s inequality

Lemma 1

E[IX≥a] = P (X ≥ a)

Consider the indicator function.

IX≥a

This is equal to 0 if X is below a and 1 otherwise.

We can take expectations of this.

E[IX≥a] = P (X ≥ a).1 + P (X < a).0 = P (X ≥ a)

E[IX≥a] = P (X ≥ a)

Lemma 2

aIX≥a ≤ X

While X is below a the left side is equal to 0, which holds.

While X is equal to a the left side is equal to X, which holds.

While X is above a the left side is equal to a, which holds.

26
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Markov’s inequality

P (X ≥ a) ≤ µ

a

From above:

aIX≥a ≤ X

We can take expectations of both sides:

E[aIX≥a] ≤ E[X]

aP (X ≥ a) ≤ E[X]

P (X ≥ a) ≤ µ

a

Chebyshev’s inequality

We know from Markov’s inequality that:

P (X ≥ a) ≤ µ

a

Let’s take the variable X to be (X − µ)2

P ((X − µ)2 ≥ a) ≤ E[(X − µ)2]

a

P ((X − µ)2 ≥ a) ≤ σ2

a

P (|X − µ| ≥
√
a) ≤ σ2

a

Take a to be a multiple k2 of the variance σ2.

a = k2σ2

P (|X − µ| ≥ kσ) ≤ σ2

k2σ2

P (|X − µ| ≥ kσ) ≤ 1

k2
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Characteristic functions

9.1 Characteristic functions

9.1.1 Characteristic functions

Transformations

Summary

Cumulative probability function

F =
∫∞
−∞ xP (x)

Moment generating function

F =
∫∞
−∞ etxP (x)

Characteristic function

F =
∫∞
−∞ eitxP (x)

Moment generating function

Take random variable X. This has moments we wish to calculate.

We can transform our function in other forms which maintain all of the required
information. For example we could also use the cumulative probability function
to calculate moments. We now look for an alternative form of the probability
density function which allows us to easily calculate moments.

One method is to use the probability density function and the definitions of
moments, but there are other options. For example, consider the function:

E[etX ]

Which expands to:

28
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E[etX ] =
∑∞
j=1

tjE[Xj ]

j!

By taking the mth derivative of this, we get

E[Xm] +
∑∞
j=m+1

tjE[Xj ]

j!

We can then set t = 0 to get

E[Xm]

Alternatively, see that differentiating m times gets us

E[XmetX ]

If we can get this function, we can then easily generate moments.

The function we need to get is:

E[etX ]

In the discrete case this is:

E[etX ] =
∑
i=1 e

txipi

In the continuous case:

E[etX ] =
∫∞
−∞ etxP (x)dx

Characteristic function

It may not be possible to calculate the integral for the moment generating
function. We now look for an alternative formula with which we can generate
the same moments.

Consider

E[eitX ]

As this can be broken down into sinusoidal functions it can more readily be
integrated.

This expands to

E[eitX ] =
∑∞
j=1

ijtjE[Xj ]

j!

By taking the mth derivative we get.

E[Xm]im +
∑∞
j=m+1

tjE[Xj ]

j!

By setting t = 0 we then get:

E[Xm]im

Alternatively see that differentiating m times gets us
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E[(iX)meitX ]

So we can get the moment by differentiating m times, and multiplying by i−m.

Inverses of these functions

Moment generating function

Characteristic function

Moments of constants added to variables

φX+c(t) = E[eit(X+c)]

φX+c(t) = E[eitXeitc]

φX+c(t) = eitcE[eitX ]

φX+c(t) = eitcφX(t)

φX(t) = e−itcφX+c(t)

Moments of constants multiplied by events

φcX(t) = E[eitcX ]

φcX(t) = φX(ct)

Taylor series of a characteristic function

φX(t) = E[eitX ]

φX(t) =
∑∞
j=0

φjX(a)(t− a)

j!

Around a = 0

φX(t) =
∑∞
j=0

φjX(0)(t)

j!

The characteristic function is now given in terms of its moments.

We know:

φjX(0) = E[Xj ]ij

So:

φX(t) =
∑∞
j=0

E[Xj ]ij(t)j

j!

φX(t) =
∑∞
j=0

E[Xj ](it)j

j!

We know:
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E[X0](it)0

0!
= E[1] = 1

E[X1](it)1

1!
= E[X](it) = itµX

E[X2](it)2

2!
=
−E[X2]t2

2
=
−(µX + σ2

X)t2

2

So:

φX(t) = 1 + itµX −
(µX + σ2

X)t2

2
+
∑∞
j=3

E[Xj ](it)j

j!
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Single observation
probability distributions
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Chapter 10

Degenerate, Bernoulli and
categorical distributions

10.1 Degenerate distribution

10.1.1 Degenerate distribution

10.1.2 Dirac delta distribution

10.2 Bernoulli distribution

10.2.1 Introduction

The outcome of a Bernoulli trial is either 0 or 1. We can describe it as:

P (1) = p

P (0) = 1− p

With a single parameter p.

10.2.2 Moments of the Bernoulli distribution

The mean of a Bernoulli trial is E[X] = (1− p)(0) + (p)(1) = p.

The variance of a Bernoulli trial is E[(X−µ)2] = (1−p)(0−µ)2 +(p)(1−µ)2 =
(1− p)p2 + p(1− p)2] = p(1− p).
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10.3 Categorical distribution

10.3.1 The categorical distribution

Bernoulli with three or more discrete possible outcomes.



Chapter 11

Simple continuous
distributions

11.1 Continous distributions

11.1.1 Uniform distribution

There is a set s such that:

P (x ∈ s) = p

P (x 6∈ s) = 0

Moments of the uniform distribution

The mean is the mean of the set s.

If the set is all numbers of the real line between two values, a and b, then:

The mean is
1

2
(a+ b).

The variance is
(b− a)2

12
in the continuous case.

The variance is
(b− a+ 1)2 − 1

12
in the discrete case.
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11.2 Other

11.2.1 Weibull distribution

11.2.2 Power law

P (X) =
α− 1

a
(
x

a
)−α

Where a is the lower bound.

P (X) = 0 for X < a.

Moments of the power law

E[Xm] =
α− 1

α− 1−m
a

If m ≥ α− 1 then this is not well defined.

Higher order moments, such that the variance, cannot be identified.

11.2.3 Logistic distribution

The logistic distribution has the cumulative distribution function:

F (x) =
1

1 + e
−
x− µ
s

11.2.4 Laplace distribution

11.2.5 Lévy distribution

Definition

The Lévy distribution is a continuous probability distribution.

The marginal probability is:

P (X) =

√
c

2π

e
−

c

2(x− µ)

(x− µ)

3

2

11.2.6 Split-normal distribution
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The central limit theorem
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Chapter 12

Independent and identically
distributed variables

12.1 Identically Independently Distributed vari-
ables (IID)

12.1.1 IID

Identically distributed

x is identically distributed to y if:

∀i(∃xi → P (xi) = P (yi))

Covariance matrix of IID variables

For IID varaibles, the covariance matrix is:

Σ = σ2I
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Chapter 13

The weak law of large
numbers

13.1 Weak law of large numbers

13.1.1 Weak law of large numbers

The sample mean is:

X̄n =
1

n

∑n
i=1Xi

The variance of this is:

V ar[X̄n] = V ar[
1

n

∑n
i=1Xi]

V ar[X̄n] =
1

n2
nV ar[X]

V ar[X̄n] =
σ2

n

We know from Chebyshev’s inequality:

P (|X − µ| ≥ kσ) ≤ 1

k2

Use X̄n as X:

P (|X̄n − µ| ≥
kσ√
n

) ≤ 1

k2

Update k so k :=
k
√
n

σ
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P (|X̄n − µ| ≥ k) ≤ σ2

nk2

As n increases, the chance that the sample mean lies outside a given distance
from the population mean approaches 0.



Chapter 14

Levy’s continuity theorem

14.1 Lévy’s continuity theorem

14.1.1 Lévy’s continuity theorem
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Chapter 15

The central limit theorem
and the gaussian/normal
distribution

15.1 Central limit theorem

15.1.1 Central limit theorem

Generalise weak law of large numbers

Characteristic function of summed IID events

Z =
∑n
i=1 Yi

φZ(t) = E[eitZ ]

φZ(t) = E[eit
∑n

i=1 Yi ]

φZ(t) = E[eitY ]n

φZ(t) = φY (t)n

Taylor series: first moments dominate with means

Z =
∑n
i=1 Yi

Y =
X

n

φZ(t) = φY (t)n

φZ(t) = φX

n

(t)n
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φZ(t) = φX(
t

n
)n

φX(t) = 1 + itµX −
(µX + σ2

X)t2

2
+
∑∞
j=3

E[Xj ](it)j

j!

φX(
t

n
) = 1 + i

tµX
n
−

(µX + σ2
X)(

t

n
)2

2
+
∑∞
j=3

E[Xj ](i
t

n
)j

j!

φX(
t

n
) = 1 + i

tµX
n
− (µX + σ2

X)t2

2n2
+
∑∞
j=3

E[Xj ](i
t

n
)j

j!

Eliminating the imaginary term

We want µ to be 0.

Z =
∑n
i=1 Yi

Y =
X − µX

n

φY (t) = 1 + itµY −
(µY + σ2

Y )t2

2
+
∑∞
j=3

E[Y j ](it)j

j!

µY = E[
X − µX

n
] = µX − µXn = 0

φY (t) = 1− σ2
Y t

2

2
+
∑∞
j=3

E[Y j ](it)j

j!

σ2
Y = E[(

X − µX
n

)2]

σ2
Y = E[

X2 + µ2
X − 2XµX
n2

]

σ2
Y =

E[X2] + E[µ2
X ]− E[2XµX ]

n2
] σ2

Y =
E[X2]− µ2

X

n2
]

σ2
Y =

σ2
X

n2

φY (t) = 1− σ2
Xt

2

2n2
+
∑∞
j=3

E[(
X − µ
n

)j ](it)j

j!

φZ(t) = φY (t)n

φZ(t) = [1− σ2
Xt

2

2n2
+
∑∞
j=3

E[(
X − µ
n

)j ](it)j

j!
]n

φZ(t) = [1− σ2
Xt

2

2n2
]n
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Eliminating σ2

Z =
∑n
i=1 Yi

Y =
X − µX
σn

φY (t) = 1 + itµY −
(µY + σ2

Y )t2

2
+
∑∞
j=3

E[Y j ](it)j

j!

µY = E[
X − µX
σXn

] = µX − µXσXn = 0

φY (t) = 1− σ2
Y t

2

2
+
∑∞
j=3

E[Y j ](it)j

j!

σ2
Y = E[(

X − µX
σn

)2]

σ2
Y = E[

X2 + µ2
X − 2XµX
σ2n2

]

σ2
Y =

E[X2] + µ2
X − 2E[X]µX
σ2n2

σ2
Y =

E[X2]− µ2
X

σ2n2

σ2
Y =

σ2
X

σ2n2

σ2
Y =

1

n2

φY (t) = 1− t2

2n2
+
∑∞
j=3

E[(
X − µ
σn

)j ](it)j

j!

φZ(t) = φY (t)n

φZ(t) = [1− t2

2n2
+
∑∞
j=3

E[(
X − µ
σn

)j ](it)j

j!
]n

φZ(t) = [1− t2

2n2
]n

Preparing for exponential expansion

We know that

[1 +
x

n
]n = ex

As n→∞.

With:
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Z =
∑n
i=1 Yi

Y =
X − µX
σn

We have:

φZ(t) = [1− t2

2n2
]n

With:

Z =
∑n
i=1 Yi

Y =
X − µX
σ
√
n

We have:

φZ(t) = [1− t2

2n
]n

Which tends towards

φZ(t) = e
−

1

2
t2

Rescaling

The average of random variables, less their mean, and divided by their standard
deviation multiplied by the square root of the sample size, follows a normal
distribution as n increases.

What does this say about the actual distribution of sample averages?

Z =
∑n
i=1 Yi

Yi =
Xi − µX
σX
√
n∑n

i=1 Yi

Y =
X

n

Let’s create Q.

Q =
ZσX√
n

+ µX

Q =
(
∑n
i=1 Yi)σX√

n
+ µX

Q =

(
∑n
i=1(

Xi − µX
σX
√
n

))σX
√
n

+ µX
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Q =
∑n
i=1(

Xi − µX
n

) + µX

Q =
∑n
i=1(

Xi − µX
n

+
µX
n

)

Q =
∑n
i=1(

Xi

n
)

This is the sample average.

φQ(t) = φZσX√
n

+µX

(t)

φQ(t) = φZ(
tσX√
n

)eitµX

φZ(
tσX√
n

) = e
−

1

2
(
tσX√
n

)2

φZ(
tσX√
n

) = e
−

1

2

t2σ2
X

n

φQ(t) = e
−

1

2

t2σ2
X

n eitµX

Normal distribution

We name the normal distribution this function when n = 1

N(µX , σ
2
X) = e

−
1

2

t2σ2
X

n eitµX

N(µX , σ
2
X) = e

−
1

2
t2σ2

X
eitµX

Getting the probability distribution function

φX(t) = e
−

1

2
t2σ2

X
eitµX

φX(t) = e
−

1

2
t2σ2

X
[cos(tµX) + i sin(tµX)]
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15.2 Convergence

15.2.1 Convergence in distribution (converge weakly)

15.2.2 Convergence in probability and o-notation

Introduction

Converges in probability

P (distance(Xn, X) > ε)→ 0

For all ε.

Xn →P X

Little o notation

Little o notation is used to describe convergence in probability.

Xn = op(an)

mean that

Xn

an

Converges to 0 and n approaches something

Can be wrtiten:

Xn

an
= op(1)

Big O notation

Big O notation is used to describe boundedness.

Xn = Op(an)

means that:

If something is little o, it is big O.

15.2.3 Almost sure convergence

Xn converges almost surely to X if:

d(Xn, X)→ 0

Where d(Xn, X) is a distance metric.

Xn →as X
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15.3 Gaussian distributions

15.3.1 Gaussian

fx =
1√

2πσ2
e
−

(x− µ)2

2σ

15.3.2 The error function and the complementary error
function

15.3.3 Multivariable Gaussian distribution

Definition

For univariate:

x ∼ N(µ, σ2)

We define the multivariate gaussian distribution as the distribution where any
linear combination of components are gaussian.

For multivariate:

X ∼ N(µ,Σ)

Where µ is now a vector, and Σ is the covariance matrix.

Density function is :

fx =
1√

(2π)n|Σ|
e
−

1

2
(x−µ)T Σ−1(x−µ)

For normal gaussian it is:

fx =
1√

2π|σ2
e
−

1

2σ2
(x−µ)2)

This is the same wher n = 1.

Singular Gaussians

Need det |Σ| and Σ−1. These rely on the covariance matrix not being degenerate.

If the covariance matrix is degenerate we can instead use the pseudo inverse,
and the pseudo determinant.



Part V

More probability
distributions from IID

49



Chapter 16

Statistics

16.1 Creating statistics

16.1.1 Creating statistics

We take a sample from the distribution.

x = (x1, x2, ..., xn)

A statistic is a function on this sample.

S = S(x1, x2, ..., xn).

16.2 Moments of statistics

16.2.1 Bias from single and joint estimation

Bias from single estimation

xi and zi are not independent, so we cannot estimate just yi = xiθ.

Bias from joint estimation

We could estimate our equation with a single ML algorithm.

yi = f(xi, θ) + g(zi) + εi

For example, using LASSO.

However this would introduce bias into our estimates for θ.

Bias from iterative estimation

We could iteratively estimate both θ and g(zi).
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For example iteratvely doing OLS for θ and random forests for zi.

This would also introduce bias into θ.

16.3 Asymptotic properties of statistics

16.3.1 Asymptotic distributions

f(θ̂)→d G

Where G is some distribution.

16.3.2 Asymptotic mean and variance

16.3.3 Asymptotic normality

Many statistics are asymptotically normally distribution.

This is a result of the central limit theorem.

For example:
√
nS →d N(s, σ2)

Confidence intervals for asymptotically normal statistics

We have the mean and variance, and know the distribution. This allows us to
calculare confidence intervals.



Chapter 17

Order statistics

17.1 Order statistics

17.1.1 Order statistics

Defining order statistics

The kth order statistic is the kth smallest value in a sample.

x(1) is the smallest value in a sample, the minimum.

x(n) is the largest value in a sample, the maximum.

Probability distributions of order statistics

The probability distribution of order statistics depends on the underlying prob-
ability distribution.

Probability distribution of sample maximum

If we have:

Y = max X

The probability distribution is:

P (Y ≤ y) = P (X1 ≤ y,X2 ≤ y, ..., Xn ≤ y)

If these are iid we have:

P (Y ≤ y) =
∏
i P (Xi ≤ y)

Fy(y) = FX(y)n

The density function is:
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fy(y) = nFX(y)n−1fx(y)

Probability distribution of the sample minimum

If we have:

Y = min X

The probability distribution is:

P (Y ≤ y) = P (X1 ≥ y,X2 ≥ y, ..., Xn ≥ y)

If these are iid we have:

P (Y ≤ y) =
∏
i P (Xi ≥ y)

Fy(y) = [1− FX(y)]n

The density function is:

fy(y) = −n[1− FX(y)]n−1fx(y)



Chapter 18

Totals of independent
draws: Binominal and
Poisson distributions

18.1 Binomial

18.1.1 Binomial distribution

If we repeat a Bernoulli trials with the same parameter and sum the results, we
have the binomial distribution.

We therefore have two parameters, p and n.

P (X = x) =
(
n
x

)
px(1− p)n−x

18.1.2 Moments of the binomial distribution

The mean is np, which can be seen as the trials are independent.

Similarly, the variances can be addeded together giving np(1− p).

18.1.3 Multinomial distribution

The mass function for the binomial case is:

f(x) =
n!

x!(n− x)!
pk(1− p)n−k

18.1.4 The multinomial distribution

This generalises the binomial distribution where there are more than 2 outcomes.
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f(x1, ..., xn) =
n!∏
i xi!

∏
i p
xi
i

18.2 Poisson

18.2.1 Poisson distribution

18.2.2 Definition

We can use the Poisson distribution to model the number of indepedent events
that occur in an a time period.

For a very short time period the chance of us observing an event is a Bernoulli
trial.

P (1) = p

P (0) = 1− p

18.2.3 Chance of no observations

Let’s consider the chance of repeatedly getting 0: P (0; t).

We can see that: P (0; t+ δt) = P (0; t)(1− p).

And therefore:

P (0; t+ δt)− P (0; t) = −pP (0; t))

By setting p = λδt:

P (0; t+ δt)− P (0; t)

δt
= −λP (0; t))

δP (0; t)

δt
= −λP (0; t)

P (0; t) = Ce−λt

If t = 0 then P (0; t) = 0 and so C = 1.

P (0; t) = e−λt

18.2.4 Deriving the Poisson distribution



Chapter 19

Time between draws:
geometric and exponential
distributions

19.1 Geometric distribution

19.1.1 Geometric distribution

19.2 Exponential distribution

19.2.1 Exponential distribution
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Extreme value distributions

20.1 Extreme value distributions

20.1.1 Type-I - Gumbel distribution

The probability function is:

f(x) =
1

β
e
−(
x− µ
β

+e

−
x− µ
β )

We can use:

z =
x− µ
β

To get:

f(x) =
1

β
e−(z+e−z)

Link to the logistic function

The difference between two draws from a Gumbel distribution is drawn from
the logistic function.

20.1.2 Type-II - Frechet distribution

20.1.3 Type-III - Reversed Weibull distribution
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The geometric distribution

21.1 Introduction

21.1.1 Introduction
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Distributions with multiple
variables
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Chapter 22

Mixture distributions

22.1 Mixture models

22.1.1 Gaussian Mixture Models

Mixture models

We have a latent variable which is part of the process

The variable is distributed according to parametric distribution, but parameters
are different for differnet latent classes.

There are K latent classes, and so K sets of parameters.

The population is weighted into the K classes.

We have a distribution, but we have different parameters for the distribution
for different populations.

For example we could observe the height of men and women, where both are
normally distributed but with different parameters.

Where there is a normal distribution, this is a Gaussian mixture model.

If there is more than one variable to observe, this is a multivariate Gaussian
mixture model.

Gaussian Mixture Models (GMM)

In a Gaussian Mixture Model each non latent variable has a normal distriubtion
with a mean and variance. For multiple variables there is a covariance matrix.
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Chapter 23

Latent class analysis and
the
expectation-maximisation
algorithm

23.1 Latent variable models

23.1.1 Latent class analysis

23.2 The Expectation-Maximisation (EM) algo-
rithm

23.2.1 The Expectation-Maximisation algorithm

Expectation-Maximisation algorithm

This is used to learn the parameters for a Gaussian Mixture Model

We cannot simply maximise the likelihood function, because this cannot be
specified for a latent model.

The log likelihood function normally is:

L(θ;X) = p(X|θ)

With hidden variables it is:

L(θ;X,Z) = p(X|θ) =
∫
p(X,Z|θ)dZ
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1: Expectation step

We consider the expected log likelihood. We call this

E[logL(θ;X,Z)]

2: Maximisation step

23.3 Stochastic Expectation-Maximisation



Part VII

The empirical distribution
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Chapter 24

The empirical distribution
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Part VIII

Exploratory data analysis
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Chapter 25

Data cleaning

25.1 Precleaning

25.1.1 Precleaning data formats (float32 for nums)

25.1.2 Standardising file types

25.2 Joining data sets

25.2.1 Consistent variable naming

25.2.2 Concatenating data

25.2.3 Joining data

25.3 Checking for consistency

25.3.1 Cross-consistency

25.4 Data shaping

25.4.1 Wide and long data

Introduction

25.4.2 Collapsing data

25.5 Dropping variables

25.5.1 Sensitive information

25.5.2 Dropping unnecessary information, like names and
derived variables

25.6 Dropping unnecessary information, like names
and derived variables

25.6.1 Creating interactive terms

25.7 Deciling continuous data



Chapter 26

Summary statistics and
visualisation for one
variable

26.1 Basis statistics for a single variable

26.1.1 N

The is the size of the sample.

26.1.2 Sample range

Minimum

This is the smallest value in the sample.

Maximum

This is the largest value in the sample.

Range

This is the difference between the maximum and minimum.

Median

This is the value whereby 50% of the sample can be found below the value.
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Percentiles

The xth percentile is the value by which x% of the values can be found below
it.

Interquartile range

This is the differnence between the 25th percentile and the 75th percentile.

26.1.3 Sample mode

The is the most common value in the sample.

26.2 Sample moments

26.2.1 Sample mean

We previously defined the population mean is defined as µ = E[X].

The sample mean is defined as x̄ =
1

n

∑
i xi.

Centred mean

We can subtract the mean from each entry in the sample. This will leave a new
mean of 0. This is convenient for many calculations.

26.2.2 Sample variance

We previously defined the population variance as σ2 = E[(X − µ)2].

We define the sample variance as σ2 =
1

n

∑
i(xi − x̄)2.

We can calculate this using matrices:

M = X − x̄

σ2 =
1

n
MTM .

Centred variance

If x̄ = 0 then:

σ2 =
1

n
XTX.
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26.3 Other

26.3.1 Standard error

26.3.2 Standard deviation

26.3.3 Sample size

26.4 Updating statistics

26.4.1 Updating the mean

x̄n+1 =
nx̄n + xn+1

n+ 1

26.4.2 Updating the variance

If it is centred:

σ2
n =

1

n
XT
nXn

So:

σ2
n+1 =

nσ2
n + xtn+1xn+1

n+ 1

26.5 Visualising a single continous variable

26.5.1 Box and whisker plots

26.5.2 Density plot



Chapter 27

Testing population means
with Z-tests and T-tests

27.1 Z-test

27.1.1 Z-test for variable significance

The standard score

We may want to see how different a mean statistic is from a specific value.

The standard score allows us to measure this, by taking this distance and stan-
dardising by the standard deviation.

z =
x̄− x0

σ

This requires us to know the standard deviation, which is in general not known.

If the sample size is large, we know this converges to the normal distribution
through the central limit theorem.

The Z-test

We can see how likely our statistic was to be produced if it was drawn from a
normal distribution with mean x0 and standard deviation s0.

P-values

This is the chance of the statistic being produced by chance.
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27.2 t-test

27.2.1 T-test for variable significance

T-statistic

In practice we don’t know the population standard deviation and so must esti-
mate it instead.

We use the standard deviation on the sample.

t =
x̄− x0

s0

Student’s t-distribution

As we have used the sample standard deviation we have lost a degree of freedom,
and can no longer model the variable as a normal distribution, as we did for the
z-statistic.

We now have a distribution with an addition parameter, the number of degrees
of freedom.

The number of degrees of freedom is n− 1.

As the sample size tends towards infinity, the distribution tends towards the
normal distribution.

Student’s t-test

Confidence interval

27.2.2 Welch’s t-test

Alternative to student.



Chapter 28

Pivotal quantities

28.1 Pivotal quantity

28.1.1 Introduction

A pivotal quantity is a statistic whose distribution does not depend on the
parameters of the underlying distribution.

For example, the z statistic if the underyling distribution is a normal distribu-
tion.
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Jackknifing

29.1 Jackknifing

29.1.1 The jackknife

We have a statistic:

S(x1, x2, ..., xn)

We may want to estimate moments for this statistic, but are unable to do so.

The jackknife estimator

The jackknife is an approach for getting moments for statistics.

We start by creating n statistics each leaving out one observation.

S̄i(x1, x2, ...xi−1, xi+1, ..., xn)

We define:

S̄ =
1

n

∑
i S̄i

Moments of the jackknife estimator

We want to know the variance.

V arS̄ =
n− 1

n

∑
i(S̄i − S̄)2.

29.1.2 The infintesimal jackknife

The jackknife as a weighting

In the jackknife we calculate the statistic leaving one observation out.

74



CHAPTER 29. JACKKNIFING 75

This is the same as weighting observations and giving one a weighting of 0 and
the others 1.

The infintesimal jackknife

For the infintesimal jackknife we reduce the weight not to 0, but by an infintes-
imal amount.

29.1.3 Variance of jackknife estimators



Chapter 30

Bootstrapping

30.1 Bootstrapping

30.1.1 Bootstrapping

If we have a sample of n, we can create bootstrap samples by drawing with
replacement for other sets with n members.

30.1.2 Variance of bootstrap estimators
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Part IX

Estimating generative
probability distributions
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Chapter 31

Non-parametric estimation
of probability distributions

31.1 Histograms

31.1.1 Histograms

31.2 Kernels

31.2.1 Kernel density estimation

31.2.2 Smoothing kernel estimation

Smoothed kernels

We have K(x− xi)

We can smooth this to:

Kh(x− xi) =
1

h
K(

x− xi
h

)

Where h > 0 is the smoothing bandwidth.

f(x) =
1

n

∑n
i=1Kh(x− xi)
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Bayesian parameter
estimation

32.1 Bayesian parameter estimation

32.1.1 Bayesian parameter estimation

Bayes rule

We want to generate the probability distribution of θ given the evidence X.

We can transform this using Bayes rule.

P (θ|X) =
P (X|θ)P (θ)

P (X)

Here we have:

• Our prior - P (θ)

• Our likelihood function - P (X|θ)

• Our posterior - P (θ|X)

Normal priors and posteriors

If our prior is a normal distribution then:

P (θ) =
1√

(2π)n|Σ0|
e
−

1

2
(x−µ)T Σ−1

0 (x−µ)

Similarly, if our likelihood function P (X|θ) is a normal distriubtion then:
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P (X|θ) =
1√

2πσ2
e
−

(x− µ)2

2σ2

We can now plug these into Bayes rule:

P (θ|X) =
1

P (X)

1√
2πσ2

0

e
−

(θ − µ0)2

2σ2
0

1√
2πσ2

e
−

(x− µ)2

2σ2

P (θ|X) ∝ e
−

1

2
[
(θ − µ0)2

σ2
0

+
(x− µ)2

σ2
]

We can then set this an a new Gaussian:

P (θ|X) =
1√

(2π)n|Σ|
1

2

e
−

1

2
[
(θ − µ0)2

σ2
0

+
(x− µ)2

σ2
]

32.1.2 Empirical Bayes

Bayes rule

We can calculate the posterior probability for θ, but we need a prior P (θ).

P (θ|X) =
P (X|θ)P (θ)

P (X)

Empirical Bayes

With empirical Bayes we get our prior from the data.

We have P (X|θ)

And P (θ|ρ)

We observe X and want to estimate θ.

P (θ|X) =
P (X|θ)P (θ)

P (X)
=
P (X|θ)
P (X)

∫
P (θ|ρ)P (ρ)dρ

32.1.3 Prior and posterior predictive distributions

Prior predictive distribution

Our prior predictive distribution for X depends on our prior for θ.

P (x) =
∫

Θ
P (x|θ)P (θ)dθ



CHAPTER 32. BAYESIAN PARAMETER ESTIMATION 81

Posterior predictive distribution

Once we have calculated P (θ|X), we can calculate a posterior probability dis-
tribution for X.

P (x|X) =
∫

Θ
P (x|θ)P (θ|X)dθ

32.1.4 Bayesian risk

Risk and Bayes risk.



Chapter 33

Point estimates of
probability distributions

33.1 Point estimates for parameters

33.1.1 Estimators

When we take statistics we are often concerned with inferring properties of the
underlying probability function.

As the properties of the probability distribution function affect the chance of ob-
serving the sample, we can analyse samples to infer properties of the underlying
distribution.

There are many properties would could be interested in. This includes moments
and parameters of a specific probability distribution function.

An estimator is a statistic which is our estimate of one of these values.

Emphasise that statistics and estimators are different things. A statistic may
be terrible estimator, but be useful for other purposes.

33.1.2 Sufficient statistics

We can make estimates of a population parameter using statistics from the
same.

A statistic is sufficient if it contains all the information needed to estimate the
parameter.

We can describe the role of a parameter as:

P (x|θ, t)
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t is a sufficient statistic for θ if:

P (x|t) = P (x|θ, t)

33.2 Properties of point estimators

33.2.1 Estimator error and bias

Error of an estimator

The error of an estimator is the difference between it and the actual parameter.

Errorθ[θ̂] = θ̂ − θ

Bias of an estimator

The bias of an estimator is the expected error.

Biasθ[θ̂] := Eθ[θ̂ − θ]

Biasθ[θ̂] := Eθ[θ̂]− θ

33.2.2 Mean Squared Error (MSE) and Root Mean Squared
Error (RMSE) of an estimator

Mean squared error

Mean squared error

MSE = E[(θ̂ − θ)2] = E[((θ̂ − E[θ̂]) + (E[θ̂]− θ))2]

MSE = E[(θ̂ − θ)2] = E[(θ̂ − E[θ̂])2 + (E[θ̂]− θ)2 + 2(E[θ̂]− θ)(θ̂ − E[θ̂])]

MSE = E[(θ̂− θ)2] = E[(θ̂−E[θ̂])2] +E[(E[θ̂]− θ)2] +E[2(E[θ̂]− θ)(θ̂−E[θ̂])]

MSE = E[(θ̂ − θ)2] = V ar(θ̂) + (E[θ̂]− θ)2 + 2(E[θ̂]− θ)E[θ̂ − E[θ̂]]

MSE = E[(θ̂ − θ)2] = V ar(θ̂) +Bias(θ̂)2

Root Mean Square Error (RMSE)

This is the square root of the MSE.

It is also called the Root Mean Square Deviation (RMSD)

33.2.3 Asymptotic properties of estimators

33.2.4 Consistency and efficiency of estimators

Consistency

A statistic θ̂ is a consistent estimator for θ if its error tends to 0.
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That is:

θ̂ →p θ

We can show that an estimator is consistent if we can write:

θ̂ − θ as a function of n, causing it to tend to 0.

Efficiency

Efficiency measures the speed at which a consistent estimator tends towards the
true value.

The speed of this convergence is the efficiency. could be fairly efficient plus
biased too p Measured as:

e(θ̂) =

1

I(θ)

V ar(θ̂)

If an estimator as an efficiency of 1 and is unbiased, it is efficient.

Relative efficiency

We can measure the relative efficiency of two consistent estimators:

The relative efficiency is the variance of the first estimator, divided by the
variance of the second.

Root-n estimators

An estimator is root-n consistent if it is consistent and its variance is:

O(
1

n
)

nδ-convergent

A consistent estimator is nδ-consistent if its variance is:

O(
1

n2δ
)

33.2.5 Cramér-Rao lower bound

For an unbiased estimator, the variance cannot be below the Cramer-Rao lower
bound.

V ar(θ̂) ≥ 1

I(θ)

Where I(θ) is the Fisher information.

We can prove this.
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We have the score:

V =
δ

δθ
ln f(X, θ)

V =
1

f(X, θ)

δ

δθ
f(X, θ)

The expectation of the score is 0:

E[V ] = E[
1

f(X, θ)

δ

δθ
f(X, θ)]

E[V ] =
∫ 1

f(X, θ)

δ

δθ
f(X, θ)dx

33.2.6 Bias-Variance trade-off

Bias-variance trade-off. if we care about E[(y− xt)2] then we may not want an
unbiased estimator. by adding some bias we could reduce the variance a lot.

33.3 Sort

33.3.1 Testing estimators

Assessing estimators of parametric models: do monte carlo simulations

33.3.2 Loss

loss functions for point estimates. point estimate confidence interval h3

33.3.3 Estimator properties

best asymptotically normal (BAN) estimators AKA consistently asymptotically
normal efficience (CANE)

these are root n consistent!

33.3.4 Feasible and infeasible estimators

Feasible uses known terms. Infeasible uses those that aren’t

Eg Ω is infeasible, unless we assume its form, making it feasible.

33.3.5 Bias etc

pages: + Cramer rao + Minimum-Variance Unbiased Estimators (MVUE)

Unbiased estimators for some kernel value. Can use used to estimate population
moments.
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33.3.6 Rao-Blackwell theorem

33.3.7 One step and k-step estimators

in cramer rao stuff?

33.3.8 Delta method

in bias section?

We can consider Xn to be a sequence. We are interest in asymptotic properties
of this sequence.

33.3.9 Fat tails

section on fat tails + can’t estimate pop mean from sample mean + method of
moments requires non-fat tails + correlation/covariance with fat tails.



Chapter 34

Likelihood functions

34.1 Likelihood functions

34.1.1 Likelihood function

We want to estimate parameters. One way of looking into this is to look at the
likelihood function:

L(θ;X) = P (X|θ)

The likelihood function shows the chance of the observed data being generated,
given specific parameters.

If this has high peaks then it provides information that θ is located in this
region.

34.1.2 IID

For multiple events, the likelihood function is:

L(θ;X) = P (X|θ)

L(θ;X) = P (A1 ∧B2 ∧ C3 ∧D4. . . |θ)

If the events are independent, that is the chance of a flip doesn’t depend on any
other outcomes, then:

L(θ;X) = P (A1|θ).P (B2|θ).P (C3|θ).P (D4|θ)...

If the events are identically distributed, the chance of flipping a head doesn’t
change across flips (for example the heads side doesn’t get heavier over time)
then:

L(θ;X) = P (A|θ).P (B|θ).P (C|θ).P (D|θ)...
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L(θ;X) =
∏n
i=1 P (Xi|θ)



Chapter 35

The score, Fisher
information and
orthogonality

35.1 Score functions

35.1.1 The score

The score is defined as the differential of the log-likelihood function with respect
to θ.

V (θ,X) =
δ

δθ
l(θ;X)

V (θ,X) =
1∏n

i=1 P (Xi|θ)
δ

δθ
L(θ;X)

35.1.2 Expectation of the score

The expectation of the score, given the true value of θ is:

E[V (X|θ)] =
∫
V (X|θ)dX

E[V (X|θ)] = E[
1∏n

i=1 P (Xi|θ)
δ

δθ
L(θ;X)]

E[V (X|θ)] =
∫ 1∏n

i=1 P (Xi|θ)
δ

δθ
L(θ;X)

E[
1∏n

i=1 P (Xi|θ)
]
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∫ 1∏n
i=1 P (Xi|θ)

P (θ)dθ

We can show that the expected value of this is 0.

35.1.3 Variance of the score

The variance of the score is:

var[
δ

δθ
l(θ;X)]

var[
1∏n

i=1 P (Xi|θ)
]

35.2 Fisher information

35.2.1 Fisher information

The Fisher information is the variance:

E[(
δ

δθ
log f(X, θ))2|θ]

E[
δ2

δθ2
log f(X, θ)|θ]

Same as expectation of score squared, because centred around 0.

35.2.2 Fisher information matrix

We have k parameters.

I(θ)ij = E[(
δ

δθi
log f(X, θ))(

δ

δθj
log f(X, θ))|θ]

35.2.3 Observed Fisher information matrix

The Fisher information matrix contains informatio about the population

The observed Fisher infoirmation is the negative of the Hessian of the log like-
lihood.

We have:

• l(θ|X) =
∑
i lnP (xi|θ)

• J(θ∗) = −∇∇T l(θ|mathbfX)|θ=θ∗

The Fisher information is the expected value of this.

I(θ) = E[J(θ)]
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35.3 Orthogonality

35.3.1 Orthogonality

Two variables are called orthogonal if their entry in fisher info matrix is 0

This means that the parameters can be calculated separately. MLE estimates
are separate

This can be written as a moment condition

δ
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Quasi-likelihood functions

36.1 Quasi-likelihood function

36.1.1 Quasi-likelihood function
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Maximum Likelihood
Estimation (MLE)

37.1 Maximising the likelihood function

37.1.1 Maximising the likelihood function

We have a likelihood function of the data.

L(θ;X) = P (X|θ)

We choose values for θ which maximise the likelihood function.

argmaxθP (X|θ)

That is, for which values of θ was the observation we saw most likely?

This is a mode estimate.

37.1.2 IID

L(θ;X) =
∏
i P (xi|θ)

37.1.3 Logarithms

We can take logarithms, which preserve stationary points. As logarithms are
defined on all values above 0, and all probabilities are also above zero (or zero),
this preserves solutions.

The non-zero stationary points of:

lnL(θ;X) = ln
∏
i P (xi|θ)

lnL(θ;X) =
∑
i lnP (xi|θ)
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37.1.4 Example: Coin flip

Let’s take our simple example about coins. Heads and tails are the only options,
so P (H) + P (T ) = 1.

P (H|θ) = θ

P (T |θ) = 1− θ

lnL(θ;X) =
∑
i lnP (xi|θ)

If we had 5 heads and 5 tails we would have:

lnL(θ;X) = 5 ln(θ) + 5 ln(1− θ)

So P (H) =
1

2
is the value which makes our observation most likely.

37.2 Properties of the MLE estimator

37.2.1 Asymptotic normality of the MLE

37.3 Results for specific distributions

37.3.1 MLE of the Gaussian distribution

The parameters are the population means and covariance matrix.

The MLE estimator for the mean is the sample mean.

The MLE estimator for the covariance matrix is the unadjusted sample covari-
ance.

37.3.2 MLE of the Poisson distribution

37.3.3 MLE of the Bernoulli and binomial distributions

37.4 Other

37.4.1 Restricted Maximum Likelihood

We can partition out Likelihood functions, and include a part only with variance.

37.4.2 Targeted Maximum Likelihood Estimation

37.4.3 Scores

Existing score: rename Maximum Likelihood score

MLE bad if true theta not at where score is 0

Eg if one sided tails, true theta is not at MLE condition.
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Can we find other scores?

37.4.4 Orthogonality

Score of one parameter depends on other parameters

If we misestimate one, then estimate another, will be bad answer

We want the score not to change around bad estimates

We want nuisance parameter bias not to affect score

separate page for orthogonality for sets of parameters. eg nuisance; of interest
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Maximum A-Priori (MAP)
estimation

38.1 Maximum A-Priori Estimation

38.1.1 Maximum A-Priori (MAP) estimation

Mode estimate

Argmaxθp(θ|X)

Using Bayes theorem:

P (θ|X) =
P (X|θ)P (θ)

P (X)

So:

P (θ|X) =
P (X|θ)P (θ)

P (X)

Argmaxθp(θ|X) = Argmaxθ
p(X|θ)P (θ)

P (X)

The denominator isn’t affected so:

Argmaxθp(θ|X) = Argmaxθp(X|θ)P (θ)

If P (θ) is a constant then this is the same as the MLE estimator.

Other

Argmaxθp(θ|X)

Mode estimate
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p(θ|X) =
p(X|θ)p(θ)
p(X)

Argmaxθ
p(X|θ)p(θ)
p(X)

θ doesn’t change denominator so can instead use:

Argmaxθp(X|θ)p(θ)

It is the same as maximum likelihood estimator if p(θ) is a constant.

38.1.2 MAP of the Gaussian distribution
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The Method Of Moments
(MOM)

39.1 Method of Moments

39.1.1 Method of moments

Introduction

If we have k parameters to estimate, we can solve this if we have k equations.

We generate these

First, we link each first k moments to functions of the parameters.

Then we replace the momenets with sample estimates.

Estimation

The moments of this population distribution are:

µi = E[Xi] = gi(θ1, ..., θk)

We have a sample.

X = [X1, ..., Xn]

We now define the method of moments estimator

µ̂i =
1

n

∑n
j=1 x

i
j
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Testing generative
parameter estimates with
Z-tests and T-tests
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Chapter 41

Choosing parametric
probability distributions

41.1 AIC

41.1.1 Introduction

41.2 AICc

41.2.1 Introduction

41.3 Bayes factor

41.3.1 Introduction

41.4 BIC

41.4.1 Introduction

41.5 Kullback-Leibler divergence

41.5.1 Kullback-Leibler divergence

Bayesian inference means we have full distribution of p(w), not just moments
of a specific point estimate

41.5.2 Cross entropy:

H(P,Q) = EP (I(Q))
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So for a discrete distribution this is:

H(P,Q) = −
∑
x P (x) logQ(x)

Q is prior

P is posterior

41.5.3 Kullback-Leibler divergence

When we move from a prior to a posterior distribution, the entropy of the
probability distribution changes.

DKL(P ||Q) = H(P,Q)−H(P )

KL divergence is also called the information gain.

41.5.4 Gibb’s inequality

DKL(P ||Q) ≥ 0

41.6 Bayesian model selection

41.6.1 Introduction

41.7 Cross entropy

41.7.1 Introduction



Chapter 42

Estimating population
moments

42.1 Plug-in estimators

42.1.1 Estimating the population mean

42.1.2 Estimating the population variance

42.1.3 Estimating the population standard deviation

102


