# Regression trees

## Regression trees

### Classic regression trees

In a classical regression tree, we follow a decison process as before, but the outcome is real number.

Within each leaf, all inputs are assigned that same number.

#### Training

With a regression problem we cannot split nodes the same way as we did for classification.

Instead by split by the residual sum of squares.

### Mixed regression trees

In classical trees all items in a leaf are assigned the same values. In this model, all are given $$\theta$$ for a parametric model.

This makes the resulting trees smoother.

We have some $$\hat y_i = f(\mathbf x_i, \theta ) + \epsilon$$

The approach generalises classic regression trees. There the estimate was $$\bar y$$. Here itâ€™s a regression.

#### Training

At each node we do OLS. If the $$R^2$$ of the model is less than some constant, we find a split which maximises the minimum of the two new $$R^2$$.

### Classifying with probabilistic decision trees

Previously our decision tree classifier was binary.

We can instead adapt the mixed tree model and using a probit model at each leaf.