RV64GQV_S, dynamic libraries, Memory Mapping Units (MMUs), Address Generation Units (AGUs), protection rings, CPU interrupts and GNU/Linux/Systemd

Adam Boult (www.bou.lt)

April 30, 2025

Contents

Pr	reface	2
Ι	To DOS	3
1	DOS fdisk	4
II ar	File systems, block devices and tools for partitioning nd formatting drives	5
2	File systems including ext2	6
3	Journalling file systems including ext4	8
4	Partitioning drives with GNU parted and util-linux: fdisk and cfdisk, and lsblk, wipefs and fsck	9
5	Formatting partitions using util-linux: mkfs	11
II se	I UEFI and non-BIOS first-stage bootloaders, and cond-stage boot loaders	12
6	More first-stage boot loaders: UEFI and coreboot/libreboot	13
7	The boot partition and second-stage boot loaders, including GRUB	14

IV Memory Mapping Units (MMUs):	16		
V Address Generation Units (AGUs):	17		
VI Linux kernel	18		
8 Loading the Linux kernel from the boot partition	19		
9 Directory layout on Linux: /boot, /sbin, /proc, /sys, /etc and /lib	20		
10 The init process, openrc and runit, and mounting using /etc/fstab 21			
VII User space	23		
11 Using swap partitions with util-linux: mkswap, swapon and swapoff, and swapfiles	24		
$12 \ /dev/shm$, /tmp and tmpfs	25		
VIII Linux multi stuff?	26		
13 Batch processing	27		
14 Interrupts	28		
15 Concurrency control	29		
IX Pseudo-character devices	30		
16 Pseudo-character device files	31		
17 Loop devices	32		
X Shells	33		
18 Interactive login shells, read-eval-print loop (REPL), the Bourne			
fg, exit, jobs	34		
19 Keyboards and locales	37		

20 Other util-linux programs, including lscpu; more; mount and umount; dmesg; hwclock; kill; whereis; cal; fallocate; su; chsh	38
21 Linux modules using kmod: lsmod, insmod, rmmod, modprobe and modinfo	40
XI GNU coreutils: Basics	41
22 GNU Core Utilities: Exploring folders using ls and dir, vdir, dircolors, du and stat	42
23 GNU Core Utilities: Reading files using cat, tac, head and tail, and nl, od, base32, base64 and basenc	43
24 GNU Core Utilities: Writing to files using cp, dd and install, mv, rm and shred, mkdir, rmdir, touch and ln, readlink, mknod, mkfifo, mktemp, sync, link, unlink, truncate, split and csplit	44
25 GNU Core Utilities: Reading and transforming text using tr, cut, split, ptx, sort, tsort, expand, unexpand and uniq, fmt, pr and fold	46
26 GNU Core Utilities: Reading from multiple files using paste, comm and join	47
27 GNU Core Utilities: Summarising files with wc and checksums (sum, cksum, b2sum, md5sum, sha1sum, sha224sum, sha256sum sha512sum	ι, 48
28 GNU Core Utilities: Modifying command invocation with chroot (and jails), env, nice, nohup, stdbuf and timeout	49
29 GNU Core Utilities: Getting system information with df, date, uptime, uname, env, printenv, nproc, pwd, stty, tty, printenv	50
30 GNU Core Utilities: Maths with seq, factor and numfmt	52
31 GNU Core Utilities: Conditionals with test, expr, true and false	53
32 GNU Core Utilities: SELinux with runcon and chcon	54
33 GNU Core Utilities: Printing with echo, printf and yes	55
34 GNU Core Utilities: tee	56
35 GNU Core Utilities: sleep	57

CONTENTS

XII Managing users and groups with shadow-utils	58
36 Home directories in /root and /home/;user;	59
37 /etc/passwd and /etc/shadow, and shadow-utils:	60
38 Setting passwords and logging out with logout and shadow- utils: passwd	61
39 Making and removing other users with shadow-utils: useradd and suserdel	62
40 Using groups with shadow utils: usermod, usermod, groupadd, groupdel, groupmod, groups, gpasswd	63
XIII GNU coreutils: groups and users	64
41 GNU Core Utilities: who and whoami, chmod, chgrp, chown, users, logname, id, groups, pinky	65
XIV Pluggable Authentication Modules (PAM)	66
42 Pluggable Authentication Modules (PAM)	67
XV GNU findutils	68
43 GNU findutils: xargs, find, locate, updatedb	69
XVI GNU text editors	70
44 ed, ex and vi	71
45 GNU nano	73
XVII procps	74
46 procps with pgrep, pkill, pidwait, sysctl, free, top, watch, ps	75
XVIII Other GNU programs	76
47 GNU man-db: man and whatis	77

CONTENTS	5
48 grep	78
49 sed	79
50 sudo, the /etc/sudoers file and disabling root login	
51 GNU which	81
XIX Scripting	82
52 awk	83
XX Additional shells	84
53 Bourne-Again Shell (bash), including commands: history	85
54 csh and tsch	87
55 ksh	88
56 zsh	89
XXI Archiving and compressing	90
57 File archiving using GNU pax-archive: pax, tar and cpio	91
58 Compression using GNU zip (gzip): gzip, gunzip and zcat	92
59 tar and zip	93
XXII Systemd	94
60 Systemd	95
XXIII Alternatives to Systemd	98
61 cron	99

Preface

This is a live document, and is full of gaps, mistakes, typos etc.

Part I To DOS

DOS fdisk

1.1 Introduction

1.1.1 Introduction

Same name as util-linux program.

Part II

File systems, block devices and tools for partitioning and formatting drives

File systems including ext2

2.1 Introduction

2.1.1 Introduction

What they are. tree? heap? concept of mapping from path to file

2.1.2 Garbage management of files

The link count is stored per file. If there are zero links to a file then the file system manager knows that the file can be deleted.

2.1.3 inodes

Bad blocks are noted in inode1.

Root is inode 2.

inode 0 is null.

Within a partition, each file or folder has a unique inode.

Each partition divided into blocks. numbered from 0. Blocks are the minimum size for readable or writable operations. Changing a block means needing to read the whole block, making a change and then rewriting the block.

Files can be stored across many blocks. Block don't have to be next to each other.

Because a block is the minimum size of any operation, there can only be one file per block, and each file takes up at least one block.

File names are the property of folders.

2.1.4 ext

2.1.5 ext2

Journalling file systems including ext4

- 3.1 Introduction
- 3.1.1 Introduction
- 3.1.2 ext3
- 3.1.3 ext4

Partitioning drives with GNU parted and util-linux: fdisk and cfdisk, and lsblk, wipefs and fsck

4.1 Partitioning drives using util-linux

4.1.1 Introduction

three options for partitioning are fdisk, gdisk and parted. parted generally seems the better option.

root partition if uefi, efi system partition (boot partition). also need boot partition if doing LVM or encryption on BIOS swap, though this is discussed later

4.1.2 fdisk

Same name as DOS fdisk.

fdisk is designed with MBR in mind, but later versions have some GPT support:

- fdisk -l (list things in /dev/) (or can use lsblk)
- fdisk /dev/sda (or whatever correct device is)
- this opens dialogue:
 - "d" to delete partitions
 - create a new table, using MBR or GPT

- create partitions (can press "n" for new)
- make one bootable
- "w" to write"

4.1.3 cfdisk

Curses ndisk

4.1.4 lsblk

See devices in /dev/

4.1.5 fsck

Fix file system.

4.1.6 gdisk

gdisk is similar to fdisk but aimed at GPT (is it part of util-linux though?)

4.1.7 wipefs

4.2 GNU parted

4.2.1 parted

partitioning using parted:

- supports MBR and GPT
- different to fdisk? needed if drives over 2TB?
- parted -l (list things in /dev/) (or can use lsblk)
- parted /dev/sda (or whatever correct device is)
- this opens dialogue:
 - see status with "print"
 - type "quit" when done
 - make gpt using "mklabel gpt"
 - make mbr using "mklabel msdos"
 - make partitions: "mkpart". is interactive
 - make one bootable? "set partition; boot on"

Formatting partitions using util-linux: mkfs

5.1 Formatting drives

5.1.1 Introduction

once partitions have been made, they show up on /dev/

5.1.2 Making ext4 partitions

mkfs.ext4 /dev/<textless_root_partition>

5.1.3 Making FAT partitions

also for grub boot?

mkfs.fat -F 32 /dev/<efi_system_partition>

5.1.4 Swap

swap, though this is discussed later

Part III

UEFI and non-BIOS first-stage bootloaders, and second-stage boot loaders

More first-stage boot loaders: UEFI and coreboot/libreboot

6.1 Introduction

6.1.1 Unified Extensible Firmware Interface (UEFI)

Supports Secure Boot.

If /sys/firmware/efi/ exists, the system is an EFI computer. Modern systems are UEFI rather than BIOS.

UEFI stores data in .efi file located in a hard drive, not a rom like in bios.

UEFI file stored in EFI system partition (ESP).

UEFI runs in 32/64 bit. bIOS in 16 bit. means uefi can support mouse and GUI.

UEFI supports disks over 2TB.

6.1.2 Coreboot and Libreboot

6.1.3 Android boot loaders

The boot partition and second-stage boot loaders, including GRUB

7.1 Introduction

7.1.1 Introduction

The first-stage bootloader, eg BIOS, looks for a second-stage bootloader to load on a disk.

The second-stage bootloader loads the linux kernel then runs "init".

7.1.2 GRand Unified Bootloader (GRUB)

GRUB is a second-stage bootloader.

If the drive is partitioned using MBR, it is stored in the MBR.

With BIOS and GPT, there needs to be a separate boot partition for it. With UEFI and GPT, it can sit in the EFI partition.

7.2 Other

7.2.1 GRUB config

There are config files associated with GRUB:

- /etc/default/grub
- /etc/grub.d/

CHAPTER 7. THE BOOT PARTITION AND SECOND-STAGE BOOT LOADERS, INCLUDING GRUB19

Running update-grub can reflect changes in the boot path.

7.2.2 EFISTUB

Allows EFI firmware to load kernel as EFI executable.

7.2.3 memtest

Run memtest from grub

Part IV

Memory Mapping Units (MMUs):

$\mathbf{Part}~\mathbf{V}$

Address Generation Units (AGUs):

Part VI Linux kernel

Loading the Linux kernel from the boot partition

8.1 Introduction

8.1.1 Introduction

linux kernel hugepages + bigger than 4k standard + page table entry on linux memory + Translation Lookaside Buffer + transparent hugepages

linux kernel stuff: + i/o subsystem stuff arond files: * "generic block layer" * "block device drivers" * i/o scheduler + memory management subsystem * virtual memory * paging page replacement * page cache + process management subsystem * signal handling * process/thread creation and termination * process scheduler + IRQ (interrupt requests?) and dispatcher

Directory layout on Linux: /boot, /sbin, /proc, /sys, /etc and /lib

9.1 Introduction

9.1.1 Introduction

9.1.2 /sbin

/sbin is where main binaries are stored.

9.1.3 /proc

/proc has kernal files?

9.1.4 /sys

9.1.5 /lib

/lib has libraries for /sbin.

9.1.6 /etc /etc has conf?

The init process, openrc and runit, and mounting using /etc/fstab

10.1 Introduction

10.1.1 Introduction

/sbin/init /etc/init/ /etc/init.d/ /etc/inittab

10.1.2 openrc

10.1.3 runit

10.1.4 /etc/fstab

Example from arch wiki:

# <device></device>	<dir></dir>	<type></type>	<options></options>	<dump></dump>	<fsck></fsck>
UUID=0a3407de-014b-458b-b5c1-848e92a327a3	/	ext4	noatime	0	1
UUID=f9fe0b69-a280-415d-a03a-a32752370dee	none	swap	defaults	0	0
UUID=b411dc99-f0a0-4c87-9e05-184977be8539	/home	ext4	noatime	0	2

Devices can also be eg /dev/sda2, but UUIDs safer.

dump refers to backing up disks

fsck says whether there should be a check first. 0 means no. 1 means 1 and is root. 2 means yes and is not root.

Options include:

+ rw (read and write) + suid (use set user IDs and group IDs from file system) + dev ("Interpret character or block special devices on the filesystem") + exec (allow execution of binaries) + auto (can mount with -a) + nouser (don't allow normal user to mount) + async

The option "defaults" uses all of these

Part VII

User space

Using swap partitions with util-linux: mkswap, swapon and swapoff, and swapfiles

11.1 Introduction

11.1.1 Introduction

can use swap file or swap partition mount swap:

+ need spare partition in partition table

mkswap /dev/<swap_partition>
swapon /dev/swap_partition

11.2 /etc/fstab

11.2.1 fstab

Can add entry into /etc/fstab.

Eg:

UUID=device_UUID none swap defaults 0 0

11.3 swapfiles

11.3.1 Introduction

/dev/shm, /tmp and tmpfs

- 12.1 Introduction
- 12.1.1 Introduction

Part VIII Linux multi stuff?

Batch processing

13.1 Introduction

13.1.1 Introduction

multiple programs set to run one after another. virtual memory (and pages) here? something on segmentation faults

DOS is like this maybe?

Interrupts

14.1 Introduction

14.1.1 Introduction

Swap between processes (eg if user says to swap during, waiting for input, or priting). multi process needed for system managment if even running 1 job? thread safety. address spcae layout randomisation. privilege. memory protection. avaoiding deadlocks. job scheduler

Concurrency control

15.1 Introduction

15.1.1 Introduction

separate to parallel or multi threading. overlapping lifetimes of programs can cause

Part IX

Pseudo-character devices

Pseudo-character device files

16.1 Introduction

16.1.1 Introduction

character device file. just buffer for input buffer and output buffer. are fifo buffers. eg keyboard and printer of characters are character device files.

16.1.2 Specifics

/dev/zero /dev/null /dev/random /dev/urandom /dev/tty* + Terminals /dev/pt* + Pseudo terminals /dev/lb* + Line printers

 $/dev/fb^* + Frame buffers$
Loop devices

17.1 Introduction

17.1.1 Introduction /dev/loop<x>

Part X Shells

Interactive login shells, read-eval-print loop (REPL), the Bourne shell implementations ash and dash, including commands: cd, fg, exit, jobs

18.1 Introduction

18.1.1 Introduction

 $\operatorname{ctrl} z$ to sleep

18.1.2 jobs

"jobs" command to see sleeping jobs. can wake up with fg

18.1.3 fg

wakes up sleeping things. (short for foreground)

18.1.4 Introduction

shebang at top.

18.1.5 Pipes

18.1.6 Multiple jobs

multiple commands (&), trailing &,

18.1.7 Control flow

&&

control flow in sh (do while, case, for loop).

18.1.8 Writing to files

```
write to file with > (overwrite) and >> (append),
direct stderr to stdout with 2>&1.
```

raise error?

18.1.9 Getting interactive input

getting input from user as part of script. doing so in password way to hide input.

18.1.10 Variables

defining variables.

env.

18.1.11 Functions

functions.

18.1.12 Passing variables to shell scripts

passing variables to sh script (-, -?)

18.1.13 xargs

18.1.14 Stream and batch data

stream vs batch data here or elsewhere?

 $CHAPTER \ 18. \ INTERACTIVE \ LOGIN \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ BOURNE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ SHELLS, \ READ-EVAL-PRINT \ LOOP \ (REPL), \ THE \ SHELLS, \ SH$

18.1.15 Other commands

exit. sleep? timer?

Keyboards and locales

19.1 Introduction

19.1.1 Introduction

loadkeys

locale-gen function to eg set languages. see locale using "locale"

Other util-linux programs, including lscpu; more; mount and umount; dmesg; hwclock; kill; whereis; cal; fallocate; su; chsh

20.1 Introduction

20.1.1 mount and umount

mount /dev/<thing> /mnt/<name>
can use -mkdir
mount --mkdir

20.1.2 kill

20.1.3 dmesg

Show kernel messages

CHAPTER 20. OTHER UTIL-LINUX PROGRAMS, INCLUDING LSCPU; MORE; MOUNT AND UMOUN

- 20.1.4 more
- 20.1.5 whereis
- 20.1.6 cal
- 20.1.7 su

run as different user

- 20.1.8 hwclock
- 20.1.9 lscpu
- 20.1.10 fallocate

$20.1.11 \quad \text{chsh and } / \text{etc/shells}$

CHoose SHell.

Valid shells listed in /etc/shells

Linux modules using kmod: lsmod, insmod, rmmod, modprobe and modinfo

21.1 Introduction

21.1.1 Linux modules

mods are in /lib/modules/

21.1.2 Linux module commands

Show loaded modules lsmod install mods insmod rmmod load mod and dependencies modprobe Get information on a module modinfo

Part XI GNU coreutils: Basics

GNU Core Utilities: Exploring folders using ls and dir, vdir, dircolors, du and stat

- 22.1 Introduction
- 22.1.1 Introduction
- 22.1.2 pwd
- 22.1.3 ls and dir
- 22.1.4 du

sizes of files in folder.

22.1.5 stat

GNU Core Utilities: Reading files using cat, tac, head and tail, and nl, od, base32, base64 and basenc

23.1 Introduction

- 23.1.1 Introduction
- 23.1.2 cat

23.1.3 head and tail

head(first x lines)

tail(last x lines)

23.1.4 nl

Number of lines. Prints file along with line number.

GNU Core Utilities: Writing to files using cp, dd and install, mv, rm and shred, mkdir, rmdir, touch and ln, readlink, mknod, mkfifo, mktemp, sync, link, unlink, truncate, split and csplit

24.1 Introduction

- 24.1.1 cp, dd and install
- 24.1.2 mv
- 24.1.3 rm and shred
- 24.1.4 mkdir
- 24.1.5 rmdir
- 24.1.6 touch
- 24.1.7 ln
- 24.1.8 readlink

Expands symlinks.

GNU Core Utilities: Reading and transforming text using tr, cut, split, ptx, sort, tsort, expand, unexpand and uniq, fmt, pr and fold

25.1 Introduction

- 25.1.1 tr
- 25.1.2 cut
- 25.1.3 split
- 25.1.4 sort

Sort lines of text files.

25.1.5 uniq

Return unique lines only.

GNU Core Utilities: Reading from multiple files using paste, comm and join

- 26.1 Introduction
- 26.1.1 Introduction

GNU Core Utilities: Summarising files with wc and checksums (sum, cksum, b2sum, md5sum, sha1sum, sha224sum, sha256sum, sha512sum

- 27.1 Introduction
- 27.1.1 Introduction
- 27.1.2 md5sum
- 27.1.3 sha1sum
- 27.1.4 sha256sum
- 27.1.5 sha512sum
- 27.1.6 crc32sum

GNU Core Utilities: Modifying command invocation with chroot (and jails), env, nice, nohup, stdbuf and timeout

28.1 Introduction

28.1.1 Introduction

chroot (changes apparent root for processes, chroot jail?)

GNU Core Utilities: Getting system information with df, date, uptime, uname, env, printenv, nproc, pwd, stty, tty, printenv

29.1 Introduction

29.1.1 df amount of Disk Free)

29.1.2 date

29.1.3 uptime

29.1.4 uname

to get info on kernel etc arch (same as uname -m) CHAPTER 29. GNU CORE UTILITIES: GETTING SYSTEM INFORMATION WITH DF, DATE, UPTIME

- 29.1.5 env and printenv
- 29.1.6 nproc

GNU Core Utilities: Maths with seq, factor and numfmt

- 30.1 Introduction
- 30.1.1 Introduction

GNU Core Utilities: Conditionals with test, expr, true and false

- 31.1 Introduction
- 31.1.1 Introduction

GNU Core Utilities: SELinux with runcon and chcon

- 32.1 Introduction
- 32.1.1 Introduction

GNU Core Utilities: Printing with echo, printf and yes

- 33.1 Introduction
- 33.1.1 Introduction

GNU Core Utilities: tee

34.1 Introduction

34.1.1 Introduction

Send things to standard output and files (ie T pipe).

GNU Core Utilities: sleep

35.1 Introduction

35.1.1 Introduction

Sleep for specified time.

Part XII

Managing users and groups with shadow-utils

Home directories in /root and /home/juser;

36.1 Introduction

36.1.1 Introduction

/root is root home directory. /home/[user] folders.

/etc/passwd and /etc/shadow, and shadow-utils:

37.1 Introduction

37.1.1 Introduction

37.1.2 /etc/passwd

Contains user names, full names, home directories and user shells.

Readable by anyone.

Used to contain hashes of passwords, but not anymore because vulnerable to dictionary attacks.

37.1.3 /etc/shadow

Contains user names and hashed passwords.

Only readable by root.

Setting passwords and logging out with logout and shadow-utils: passwd

38.1 Introduction

38.1.1 passwd

is file with info on users /etc/passwd contains hash of password: /etc/shadow

38.1.2 logout

Making and removing other users with shadow-utils: useradd and suserdel

39.1 Introduction

39.1.1 useradd

useradd

39.1.2 userdel

userdel

what happens to files with user as owner?

Using groups with shadow utils: usermod, usermod, groupadd, groupdel, groupmod, groups, gpasswd

40.1 Introduction

40.1.1 Introduction

usermod to add user to group

users have primary group associated with just them, usually same name. can change using usermod.

groupadd, groupdel, groupmod, 777 etc. what happens to file when group deleted? command groups shows what groups a user is in

cont groups gpasswd to set passwords for groups. /etc/groups, /etc/gshadow

Part XIII

GNU coreutils: groups and users

GNU Core Utilities: who and whoami, chmod, chgrp, chown, users, logname, id, groups, pinky

41.1 Introduction

41.1.1 who

Who is logged in and what they are doing.

41.1.2 whoami

Part XIV

Pluggable Authentication Modules (PAM)

Pluggable Authentication Modules (PAM)

- 42.1 Introduction
- 42.1.1 Introduction
Part XV GNU findutils

GNU findutils: xargs, find, locate, updatedb

- 43.1 Introduction
- 43.1.1 xargs
- 43.1.2 find
- 43.1.3 locate
- 43.1.4 updatedb

Part XVI

GNU text editors

ed, ex and vi

- 44.1.1 Introduction
- 44.2 ex
- 44.2.1 Introduction
- 44.3 vi
- 44.3.1 Introduction

zz; ZZ

text folding.

44.3.2 Input mode

exit with escape

44.3.3 Basic editing

cursor before or after i/anew line above or below 0/oundo

u

44.3.4 Command mode

quit
:q
write and quit
:wq
quit without saving
:q!
vi has .swp files. swap files. recovery file for file being edited.
vi copy paste

44.3.5 Opening other files

:e[dit] FILE_PATH
:vi[sual] FILE_PATH

GNU nano

- 45.1 Introduction
- 45.1.1 Introduction

Part XVII

procps

procps with pgrep, pkill, pidwait, sysctl, free, top, watch, ps

46.1 Introduction

46.1.1 Introduction

46.1.2 ps

See processes one off then return to terminal.

46.1.3 free

free is different to top because dumps to out, not interactive.

"free -m" shows free memory. distinction between free memory and available memory. free memory often very low because linux uses ram where possible

Part XVIII Other GNU programs

GNU man-db: man and whatis

- 47.1 Introduction
- 47.1.1 Introduction
- 47.1.2 man
- 47.1.3 whatis

one line version of man

grep

48.1 Introduction

48.1.1 Introduction

g/re/p (globally search for a regular expression and print matching lines) grep, egrep, fgrep

\mathbf{sed}

49.1 Introduction

49.1.1 sed

minor scripting options but not central to concept. is regex thing.

sudo, the /etc/sudoers file and disabling root login

- 50.1 Introduction
- 50.1.1 sudo

GNU which

51.1 Introduction

51.1.1 Introduction

prints what would have been executed if the command was typed, with full path

Part XIX

Scripting

awk

52.1 Introduction

52.1.1 Introduction

rewrite grep as awk command as an example (actiona return all, pattern is regex) can do patterns inside actions too 0*returnwholeline*1 return first col Maths in awk? rewrite sed in awk? rewrite cat etc in awk?

Part XX Additional shells

Bourne-Again Shell (bash), including commands: history

53.1 Introduction

53.1.1 Introduction

53.1.2 Prompt string

ps0/ps1/ps2/ps3/ps4

affect how terminal is presented:

ps0: what is displayed after command, before output ps1: what is displayed before command (most used customisation)

53.1.3 bash_history

contains history of bash commands

~/.bash_history

53.1.4 bashrc

~/.bashrc

can customise prompt strings here.

53.1.5 bashprofile

.bashprofile

csh and tsch

- 54.1 Introduction
- 54.1.1 Introduction

\mathbf{ksh}

- 55.1 Introduction
- 55.1.1 Introduction

\mathbf{zsh}

- 56.1 Introduction
- 56.1.1 Introduction

Part XXI

Archiving and compressing

File archiving using GNU pax-archive: pax, tar and cpio

57.1 Introduction

57.1.1 Introduction

Makes multiple files into a single file.

57.1.2 pax

57.1.3 tar

Tape archive xvf flags to untar

57.1.4 cpio

Compression using GNU zip (gzip): gzip, gunzip and zcat

- 58.1 Introduction
- 58.1.1 Introduction
- 58.1.2 gzip and gunzip
- 58.1.3 zcat

tar and zip

- 59.1 Introduction
- 59.1.1 tar
- 59.1.2 zip

Part XXII

Systemd

Systemd

60.1 Introduction

60.1.1 Introduction

replaces init

systemd:

+ /usr/lib/systemd/system/ + /etc/systemd/system/ systemd init system (doesn't have runlevels) /lib/systemd/system/jnginx.service; /etc/systemd/system/multi-user.target.wants/jnginx.service; /etc/inittab not on systemd

60.2 Replacing cron with systemd

60.2.1 General commands

List installed systemctl list-unit-files systemctl status running systemctl list-units systemctl daemon-reload see if thing failed: systemctl --failed

60.2.2 journalctl

see logs: journalctl (part of systemd?)
journalctl

60.2.3 Unit specific commands

systemctl status <unit> systemctl help <help> systemctl is-enabled <unit> systemctl start <unit> systemctl start <unit> systemctl stop <unit> systemctl restart <unit> systemctl reload <unit> Starts at boot, or starts now. systemctl enable <unit> systemctl enable <unit> --now systemctl disable <unit> systemctl reenable <unit> systemctl mask <unit> systemctl unmask <unit> systemctl edit <unit> systemctl revert <unit>

60.3 Replacing GRUB with systemd-boot

60.3.1 systemd-boot

Alternative to GRUB which supports UEFI.

60.3.2 systemd-stub

60.4 The systemd implementation of /tmp

60.4.1 Introduction

60.5 Mounting with systemd

60.5.1 Introduction

systemd-gpt-auto-generator

systemd.automount

Requires GPT.

If using systemd, don't need to manually create swap for partition in /etc/fstab, systemd will find it by going through partitions

Doesn't replace /etc/fstab, but means don't need to include drives on GPT there, or swap.

60.6 systemd-cryptenroll

60.6.1 Introduction

Can manage physical security tokens and passwords for LUKS2.

60.7 systemd-homed

60.7.1 Introduction

Allows the creation of portable users.

Part XXIII

Alternatives to Systemd

cron

- 61.1 Introduction
- 61.1.1 Introduction