Indefinite orthogonal groups: The indefinite/pseudo orthogonal group, the split orthogonal group, the Lorentz group

Indefinite (pseduo) and split orthognal groups \(O(n,m,F)\)

Recap: Metric-preserving transformations

The bilinear form is:

\(u^TMv\)

The transformations which preserve this are:

\(P^TMP=M\)

The metric

If the metric is:

\(M=\begin{bmatrix}-1 & 0 & 0 & 0\\0 & 1 & 0 & 0\\0 & 0 & 1 & 1\\0 & 0 & 0 & 1\end{bmatrix}\)

Then we have the indefinite orthogonal group \(O(3,1)\)

The split orthogonal group

Where \(n=m\) we have the split orthogonal group.

\(O(n,n,F)\)

Signatures

The Lorentz group

The Lorentz group is the \(O(1,3)\) group.

Symmetries of the Lorentz group

We can do the usual \(3\) rotations, however there are additional \(3\) symmetries, making the Lorzentz group \(6\)-dimensional.

These are the Lorentz boosts.

A symmetry has:

\(t'^2 - x'2 - y'^2 - z'^2 = t^2 - x^2 - y^2 - z^2\)

We consider the case where we just boost on \(x\), so \(y = y'\) and \(z = z'\).

\(t'^2 - x'2 = t^2 - x^2\)

Or with \(c\):

\(c^2t'^2 - x'2 = ct^2 - x^2\)

New

\(s^2 = t^2 - x^2 - y^z - z^2\)

\(s'^2 = t'^2 - x'^2 - y'^2 - z'^2\)

\(ds^2 = s'^2 - s^2\)

\(ds^2 = (t'^2 - x'^2 - y'^2 - z'^2) - (t^2 - x^2 - y^z - z^2)\)

\(ds^2 = (t'^2 - t^2) - (x'^2 - x^2) - (y'^2 - y^2) - (z'^2 - z^2)\)

\(ds^2 = dt^2 - dx^2 - dy^2 - dz^2\)

boost: \(s^2 = c^2t^2 - x^2 - y^z - z^2\)

we want new t and x where distance is same \(c^2t'^2 - x'^2 - y^z - z^2 = c^2t^2 - x^2 - y^z -z^2\) \(c^2t'^2 - x'^2 = c^2t^2 - x^2\)

We know that both transformations are linear [WHY??], therefore \(x' = Ax + Bt\) \(t' = Cx+Dt\)

we transform to \(x' = 0\). so \(Ax + Bt = 0\)

We define \(v = \dfrac{x}{t}\)

So: \(x = vt\)

We can plug these in: \(Avt + Bt = 0\) \(Av + B = 0\) \(\dfrac{A}{B} = -v\)