Polar coordinates

Polar coordinates

Polar co-ordinates

All complex numbers can be shown in polar form

Consider a complex number

\(z=a+bi\)

We can write this as:

\(z=r\cos(\theta ) + ir\sin(\theta )\)

Polar forms are not unique

Because the functions loop:

\(ae^{i\theta }=a(\cos(\theta )+i\sin(\theta ))\)

\(ae^{i\theta }=a(\cos(\theta +n\tau )+i\sin(\theta +n\tau ))\)

\(ae^{i\theta }= ae^{i\theta +n\tau}\)

Additionally:

\(ae^{i\theta }=a(\cos(\theta )+i\sin(\theta ))\)

\(ae^{i\theta }=a(\cos(\theta )+i\sin(\theta ))\)

\(ae^{i\theta }=-a(\cos(\theta )-i\sin(\theta ))\)

\(ae^{i\theta }=-a(\cos(\theta +\dfrac{\pi }{2})+i\sin(\theta +\dfrac{\pi }{2}))\)

Real and imaginary parts of a complex number in polar form

We can extract the real and imaginary parts of this number.

\(Re(z):=r\cos (\theta )\)

\(Im(z):=r\sin (\theta )\)

Alternatively:

\(Re(z)=r\dfrac{e^{i\theta }+e^{-i\theta }}{2}\)

\(Im(z)=r\dfrac{e^{i\theta }-e^{-i\theta }}{2i}\)

Moving between polar and cartesian coordinates

All polar numbers can be shown as Cartesian

\(ae^{i\theta }=a(\cos(\theta )+i\sin(\theta ))\)

\(ae^{i\theta }=a\cos(\theta )+ia\sin(\theta )\)

\(z=a+bi\)

\(e^{i\theta }=\)

\(e^x=\sum^{\infty }_{i=0} \dfrac{x^i}{i!}\)

Arithmetic of polar coordinates

Addition

\(z_3=z_1+z_2\)

\(z_3=a_1e^{i\theta_1}+a_2e^{i\theta_2}\)

\(z_3=a_1[\cos(\theta_1)+i\sin(\theta_1)]+a_2[\cos(\theta_2)+i\sin(\theta_2)]\)

\(z_3=[a_1\cos(\theta_1)+a_2\cos(\theta_2)]+i[a_1\sin(\theta_1)+a_2 \sin(\theta_2)]\)

Multiplication

\(z_3=z_1.z_2\)

\(z_3=a_1e^{i\theta_1}a_2e^{i\theta_2}\)

\(z_3=a_1a_2e^{i(\theta_1+\theta_2)}\)

\(a_3=a_1a_2\)

\(\theta_3=\theta_1+\theta_2\)